精英家教网 > 高中数学 > 题目详情
若a=0.5 
1
2
,b=0.5 
1
3
,c=0.5 
1
4
,则a,b,c的大小关系为(  )
A.a>b>cB.a<b<cC.a<c<bD.a>b>c
相关习题

科目:高中数学 来源: 题型:

若a=0.5 
1
2
,b=0.5 
1
3
,c=0.5 
1
4
,则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a=0.5 
1
2
,b=0.5 
1
3
,c=0.5 
1
4
,则a,b,c的大小关系为(  )
A.a>b>cB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建师大附中高一第二学期模块考试数学 题型:解答题

,在线段上任取两点C,D(端点除外),将线段分成三条线段AC,CD,DB.

(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称事件A)的概率;

(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称事件B)的概率;

(3)根据以下用计算机所产生的20组随机数,试用随机数摸拟的方法,来近似计算(Ⅱ)中事件B的概率.

20组随机数如下:

 

1组

2组

3组

4组

5组

6组

7组

8组

9组

10组

X

0.52

0.36

0.58

0.73

0.41

0. 6

0.05

0.32

0.38

0.73

Y

0.76

0.39

0.37

0.01

0.04

0.28

0.03

0.15

0.14

0.86

 

 

11组

12组

13组

14组

15组

16组

17组

18组

19组

20组

X

0.67

0.47

0.58

0.21

0.54

0. 64

0.36

0.35

0.95

0.14

Y

0.41

0.54

0.51

0.37

0.31

0.23

0.56

0.89

0.17

0.03

(X是之间的均匀随机数,Y也是之间的均匀随机数)

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10
数学成绩 95 75 80 94 92 65 67 84 98 71
物理成绩 90 63 72 87 91 71 58 82 93 81
序号 11 12 13 14 15 16 17 18 19 20
数学成绩 67 93 64 78 77 90 57 83 72 83
物理成绩 77 82 48 85 69 91 61 84 78 86
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀 12
合计 20
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
P(K2≥x0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
②独立性检验随机变量K2值的计算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 9 10 11 12 13 14
人数 10 18 22 25 20 5
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 歌迷 合计
合计
(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
P(K2k 0.05 0.01
k 3.841 6.635
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 9 10 11 12 13 14
人数 10 18 22 25 20 5
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 歌迷 合计
合计
(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
P(K2≥k) 0.05 0.01
k 3.841 6.635
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀
合计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩如下表所示:若单科成绩在85分以上(含85分),则该科成绩为优秀.
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
(1)根据上表完成下面的2×2列联表(单位:人)
数学成绩优秀 数学成绩不优秀 总计
物理成绩优秀
物理成绩不优秀
总计 20
(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理之间有关系?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.100 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>


同步练习册答案