精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数,若函数f(x)在区间[1,+∞)内调递增,则a的取值范围是(  )
A.(-∞,1]B.(-∞,-1]C.[1,+∞)D.[-1,+∞)
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数,若函数f(x)在区间[1,+∞)内调递增,则a的取值范围是(  )
A、(-∞,1]
B、(-∞,-1]
C、[1,+∞)
D、[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(Ⅰ)若a=1,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[1,2]上的最小值;
(Ⅲ)求证:对于任意的n∈N*,n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1-xax
,其中a为大于零的常数.
(1)当a=1时,求函数f(x)单调区间.
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(Ⅰ)若a=1,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[1,2]上的最小值;
(Ⅲ)求证:对于任意的n∈N*,n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数,若函数f(x)在区间[1,+∞)内调递增,则a的取值范围是(  )
A.(-∞,1]B.(-∞,-1]C.[1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(1)当a=1时,求函数f(x)单调区间.
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:金华模拟 题型:解答题

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(I)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(II)设函数g(x)=(p-x)
e-x 
+1
,若存在x0∈[1,e],使不等式g(x0)≥lnx0成立,求实数p的取值范围.(e为自然对数的底)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+
1-x
ax
,其中a
为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)已知函数f(x)=lnx+
1-x
ax
,其中a
为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金华模拟)已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(I)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(II)设函数g(x)=(p-x)
e
-x
 
+1
,若存在x0∈[1,e],使不等式g(x0)≥lnx0成立,求实数p的取值范围.(e为自然对数的底)

查看答案和解析>>


同步练习册答案