精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(I)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(II)设函数g(x)=(p-x)
e-x 
+1
,若存在x0∈[1,e],使不等式g(x0)≥lnx0成立,求实数p的取值范围.(e为自然对数的底)
(I)f′(x)=
ax-1
ax2
(x>0),令f′(x)=0,得x=
1
a

所以在(0,
1
a
]上f′(x)≤0,在[
1
a
,+∞)上f′(x)≥0,
所以f(x)在(0,
1
a
]上单调递减,在[
1
a
,+∞)上单调递增,
因为函数f(x)在区间[1,+∞)内单调递增,
所以
1
a
≤1
,又a>0,所以a≥1,
所以所求实数a的取值范围为[1,+∞);
(II)存在x0∈[1,e]使g(x0)≥lnx0,即存在x0∈[1,e]使p≥(lnx0-1)ex0+x0成立,
令h(x)=(lnx-1)ex+x,从而p≥hmin(x)(x∈[1,e]),
h′(x)=(
1
x
+lnx-1
)ex+1,
由(I)知当a≥1且x≥1时,f(x)=lnx+
1-x
ax
≥f(1)=0成立,
所以
1
x
+lnx
-1≥0在[1,e]上成立,
所以h′(x)=(
1
x
+lnx-1)ex
+1≥1+1>0,
所以h(x)=(lnx-1)ex+x在[1,e]上单调递增,
所以hmin(x)=h(1)=1-e,
所以p≥1-e.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案