精英家教网 > 高中数学 > 题目详情
函数f(x)=log
1
2
(x2-2x-3)
,则函数f(x)的增值区间为(  )
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(3,+∞)
相关习题

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(x2-2x-3)
,则函数f(x)的增值区间为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=log
1
2
(x2-2x-3)
,则函数f(x)的增值区间为(  )
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①函数y=f(x)的图象与函数y=f(x-2)+3的图象一定不会重合;②函数y=log
1
2
(-x2+2x+3)
的单调区间为(1,+∞);③双曲线的渐近线方程是y=±
3
4
x
,则该双曲线的离心率是
5
4
,其中正确命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
(1)不等式(x-1)
x2-x-2
0的解集为[2,+∞);
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”成立的必要不充分条件;
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数
y=sin(-2x+
π
4
)(x∈R)
的图象;
(4)函数f(x)=log
1
2
(x2+ax+2)
的值域为R,则实数a的取值范围是(-2
2
,2
2
).
其中正确的说法有(  )
A、.1个B、2个
C、3个D、.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四种说法:
(1)不等式(x-1)
x2-x-2
0的解集为[2,+∞);
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”成立的必要不充分条件;
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数
y=sin(-2x+
π
4
)(x∈R)
的图象;
(4)函数f(x)=log
1
2
(x2+ax+2)
的值域为R,则实数a的取值范围是(-2
2
,2
2
).
其中正确的说法有(  )
A..1个B.2个C.3个D..4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)已知命题:
(1)函数y=2sinx的图象向右平移
π
6
个单位后得到函数y=2sin(x+
π
6
)
的图象;
(2)已知f(x)=
x+3,(x≤1)
-x2+2x+3,(x>1)
,则函数g(x)=f(x)-ex的零点个数为2;
(3)函数y=log
1
2
(x2-5x+6)
的单调增区间为(-∞,
5
2
)

则以上命题中真命题个数为(  )

查看答案和解析>>

科目:高中数学 来源:天津模拟 题型:填空题

给出下列四个命题:
①已知a=
π0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是______(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)给出下列四个命题:
①已知a=
π
0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是
①③④
①③④
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是
 
.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
y=
x-3
+
2-x
是函数解析式;
③若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
y=
1-x2
1-|3-x|
是非奇非偶函数;
⑤函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1).

查看答案和解析>>


同步练习册答案