精英家教网 > 高中数学 > 题目详情
已知奇函数f(x),定义域为R且f(x)在(0,+∞)内单调递增,则f(-2),f(1),f(-1)的大小关系为(  )
A.f(-2)<f(-1)<f(1)B.f(-2)<f(1)<f(-1)C.f(-2)>f(-1)>f(1)D.无法确定
相关习题

科目:高中数学 来源: 题型:

12、已知奇函数f(x),定义域为R且f(x)在(0,+∞)内单调递增,则f(-2),f(1),f(-1)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知奇函数f(x),定义域为R且f(x)在(0,+∞)内单调递增,则f(-2),f(1),f(-1)的大小关系为(  )
A.f(-2)<f(-1)<f(1)B.f(-2)<f(1)<f(-1)C.f(-2)>f(-1)>f(1)D.无法确定

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高一(上)段考数学试卷(解析版) 题型:选择题

已知奇函数f(x),定义域为R且f(x)在(0,+∞)内单调递增,则f(-2),f(1),f(-1)的大小关系为( )
A.f(-2)<f(-1)<f(1)
B.f(-2)<f(1)<f(-1)
C.f(-2)>f(-1)>f(1)
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知奇函数f(x),定义域为R且f(x)在(0,+∞)内单调递增,则f(-2),f(1),f(-1)的大小关系为


  1. A.
    f(-2)<f(-1)<f(1)
  2. B.
    f(-2)<f(1)<f(-1)
  3. C.
    f(-2)>f(-1)>f(1)
  4. D.
    无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

10、已知奇函数f(x)的定义域为R,且是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a10)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得f(cos2θ-3)+f(4m-2mcosθ)>f(0),对一切θ∈[0,
π2
]
都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且对于任意实数x都有f(x+4)=f(x)成立,又f(1)=4,那么f[f( 7)]等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得f(cos2θ-7)+f(4m-2mcosθ)>f(0),对一切θ∈[0,
π2
]
都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得f[cos2(θ+
π
3
)-7]+f[4m-2mcos(θ+
π
3
)]>f(0)
,对一切θ∈[0,
π
2
]
,都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )

查看答案和解析>>


同步练习册答案