精英家教网 > 高中数学 > 题目详情
若对x∈(-∞,-1]时,不等式(m2-m)2x-(
1
2
)x<1
恒成立,则实数m的取值范围是(  )
A.(-2,3)B.(-3,3)C.(-2,2)D.(-3,4)
相关习题

科目:高中数学 来源: 题型:

若对x∈(-∞,-1]时,不等式(m2-m)2x-(
1
2
)x<1
恒成立,则实数m的取值范围是(  )
A、(-2,3)
B、(-3,3)
C、(-2,2)
D、(-3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对x∈(-∞,-1]时,不等式(m2-m)2x-(
1
2
)x<1
恒成立,则实数m的取值范围是(  )
A.(-2,3)B.(-3,3)C.(-2,2)D.(-3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-a
x2+2
(x∈R)
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在区间[-1,1]上是增函数,求实数a的取值范围A;
(3)在(2)的条件下,设关于x的方程f(x)=
1
x
的两个根为x1、x2,若对任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
2x-a
x2+2
(x∈R)
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在区间[-1,1]上是增函数,求实数a的取值范围A;
(3)在(2)的条件下,设关于x的方程f(x)=
1
x
的两个根为x1、x2,若对任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-a
x2+2
(x∈R).
(1)当f(1)=1时,求函数f(x)的单调区间;
(2)设关于x的方程f(x)=
1
x
的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:济南二模 题型:解答题

已知函数f(x)=
2x-a
x2+2
(x∈R).
(1)当f(1)=1时,求函数f(x)的单调区间;
(2)设关于x的方程f(x)=
1
x
的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)=
-2x+b
2x+1+a

(1)求a、b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)若函数g(x)是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的奇函数f(x)=
-2x+b
2x+1+a

(1)求a、b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)若函数g(x)是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上函数f(x)=
b-2x
a+2x+1
是奇函数.
(1)对于任意t∈R不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(2)若对于任意实数,m,x,f(x)<m2+2tm+t+
5
2
恒成立,求t的取值范围.
(3)若g(x)是定义在R上周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上函数f(x)=
b-2x
a+2x+1
是奇函数.
(1)对于任意t∈R不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(2)若对于任意实数,m,x,f(x)<m2+2tm+t+
5
2
恒成立,求t的取值范围.
(3)若g(x)是定义在R上周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求g(x)=0的所有解.

查看答案和解析>>


同步练习册答案