精英家教网 > 高中数学 > 题目详情
点P在双曲线
x2
a2
-
y2
b2
=1(a,b>0)
上,F1、F2是这条双曲线的两个焦点,F1PF2=
π
2
,且△F1PF2的三条边长成等差数列,则此双曲线的离心率等于(  )
A.3B.4C.5D.6
相关习题

科目:高中数学 来源: 题型:

点P在双曲线
x2
a2
-
y2
b2
=1(a,b>0)
上,F1、F2是这条双曲线的两个焦点,F1PF2=
π
2
,且△F1PF2的三条边长成等差数列,则此双曲线的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P在双曲线
x2
a2
-
y2
b2
=1(a,b>0)
上,F1、F2是这条双曲线的两个焦点,F1PF2=
π
2
,且△F1PF2的三条边长成等差数列,则此双曲线的离心率等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的离心率e=2,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2) 满足(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的离心率e=2,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)满足(  )
A.必在圆x2+y2=2内B.必在圆x2+y2=2外
C.必在圆x2+y2=2上D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源:杭州二模 题型:单选题

双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2PF2,则双曲线的离心率是(  )
A.
5
B.2C.
3
D.
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点F作双曲线在第一、第三象限的渐近线的垂线l,垂足为P,l与双曲线的左、右支的交点分别为A,B.
(1)求证:P在双曲线的右准线上;
(2)求双曲线离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e=
2
,右焦点为f(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )
A、在圆x2+y2=8外
B、在圆x2+y2=8上
C、在圆x2+y2=8内
D、不在圆x2+y2=8内

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点为F(c,0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)(  )
A、必在圆x2+y2=2内
B、必在圆x2+y2=2外
C、必在圆x2+y2=2上
D、以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在双曲线:
x2
a2
-
y2
b2
 =1
(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是(  )

查看答案和解析>>


同步练习册答案