精英家教网 > 高中数学 > 题目详情
已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上(  )
A.单调递减且最大值为7B.单调递增且最大值为7
C.单调递减且最大值为3D.单调递增且最大值为3
相关习题

科目:高中数学 来源: 题型:

3、已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上(  )
A.单调递减且最大值为7B.单调递增且最大值为7
C.单调递减且最大值为3D.单调递增且最大值为3

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:2.12 函数的综合问题(解析版) 题型:选择题

已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上( )
A.单调递减且最大值为7
B.单调递增且最大值为7
C.单调递减且最大值为3
D.单调递增且最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上


  1. A.
    单调递减且最大值为7
  2. B.
    单调递增且最大值为7
  3. C.
    单调递减且最大值为3
  4. D.
    单调递增且最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数y=f(x)的定义域为[a,b],值域为[
1
b
,  
1
a
] (1≤a<b)
,求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.
(1)求f(1),f(-2)的值;
(2)求f(x)的解析式并画出简图;
(3)根据图象写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆市西南师大附中高三(上)9月月考数学试卷(文科)(解析版) 题型:解答题

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数y=f(x)的定义域为[a,b],值域为,求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数;请解答以下问题:
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
(x∈(0,+∞))
是否为闭函数?并说明理由;
(3)若y=k+
x
(k<0)
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数.请解答以下问题:
(1)判断函数f(x)=1+x-x2(x∈(0,+∞))是否为闭函数?并说明理由;
(2)求证:函数y=-x3(x∈[-1,1])为闭函数;
(3)若y=k+
x
(k<0)
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],且它们在x∈[0,3]上的图象如图所示,则不等式f(x)•g(x)<0的解集是
(-2,-1)∪(0,1)∪(2,3)
(-2,-1)∪(0,1)∪(2,3)

查看答案和解析>>


同步练习册答案