精英家教网 > 高中数学 > 题目详情
已知A,B是双曲线
x2
4
-y2=1
的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆
x2
4
+y2=1
于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-
15
8
,假设k3>0,则k3的值为(  )
A.1B.
1
2
C.2D.4
相关习题

科目:高中数学 来源:浙江模拟 题型:单选题

已知A,B是双曲线
x2
4
-y2=1
的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆
x2
4
+y2=1
于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-
15
8
,假设k3>0,则k3的值为(  )
A.1B.
1
2
C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知A,B是双曲线
x2
4
-y2=1
的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆
x2
4
+y2=1
于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-
15
8
,假设k3>0,则k3的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一条双曲线
x2
4
-y2=1
的左、右顶点分别为A1,A2,点M(x1,y1),N(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1M与A2N交点的轨迹E的方程式;
(2)设直线l与曲线E相交于不同的两点A,B,已知点A的坐标为(-2,0),若点Q(0,y0)在线段AB的垂直平分线上,且
QA
QB
=4
.求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:门头沟区一模 题型:解答题

已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
4
-y2=1
和定点P(2,
1
2
)

(1)求过点P且与双曲线C只有一个公共点的直线方程;
(2)双曲线C上是否存在A,B两点,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
4
-y2=1
和定点P(2,
1
2
)

(1)求过点P且与双曲线C只有一个公共点的直线方程;
(2)双曲线C上是否存在A,B两点,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程是
x2
4
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,C2的左、右顶点分别为C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A,B,且
OA
OB
>2
(O为原点),求k的取值范围;
(3)设P1,P2分别是C2的两条渐近线上的点,点M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1
,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).

查看答案和解析>>


同步练习册答案