精英家教网 > 高中数学 > 题目详情
已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是(  )
A.
1
9
B.
1
12
C.
1
18
D.
5
36
相关习题

科目:高中数学 来源: 题型:

已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是(  )
A、
1
9
B、
1
12
C、
1
18
D、
5
36

查看答案和解析>>

科目:高中数学 来源:眉山一模 题型:单选题

已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是(  )
A.
1
9
B.
1
12
C.
1
18
D.
5
36

查看答案和解析>>

科目:高中数学 来源:2010年四川省眉山市高考数学一模试卷(文科)(解析版) 题型:选择题

已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高考数学模拟试卷(理科)(解析版) 题型:选择题

已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数y=x-1,令x=-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),则P1,P2两点在同一反比例函数图象上的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田二中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数y=(2≤x≤4)
(1)当x=时,求y的值.
(2)令t=log2x,求y关于t的函数关系式.
(3)求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中数学 来源:2015届江西赣州四所重点中学高二上学期期末联考理数学试卷(解析版) 题型:解答题

已知函数yx1,令x―4,―3,―2,1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2)

1)求P1,P2两点在双曲线xy6上的概率;

2)求P1,P2两点不在同一双曲线xyk(k≠0)上的概率。

 

查看答案和解析>>


同步练习册答案