精英家教网 > 高中数学 > 题目详情
函数y=(
1
2
 x2-2x的值域为(  )
A.[
1
2
,+∞
B.(-∞,2]C.(0,
1
2
]
D.(0,2]
相关习题

科目:高中数学 来源: 题型:

函数y=(
1
2
)-x2+2x
的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
 x2-2x的值域为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=(
1
2
 x2-2x的值域为(  )
A.[
1
2
,+∞
B.(-∞,2]C.(0,
1
2
]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:葫芦岛模拟 题型:解答题

已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
)
2x-x2
的值域为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=(
1
2
)
2x-x2
的值域为(  )
A.[
1
2
,+∞)
B.(-∞,
1
2
]
C.(0,
1
2
]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题
①函数y=f(x)的图象与直线x=a最多有一个交点;
②函数y=-x2+2ax+1在区间(-∞,2]上单调递增,则a∈(-∞,2];
③若f(x+2)=
1
f(x)
,当x∈(0,2)时,f(x)=2x,则f(2011)=
1
2

④函数y=log2(x2+ax+2)的值域为R,则实数a的取值范围是(-2
2
,2
2
)

⑤函数y=f(1+x)与y=f(-x-1)的图象关于y轴对称;
以上命题正确的个数有(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五种说法:
①函数y=f(-x+2)与y=f(x-2)的图象关于y轴对称;
②函数y=(
1
2
)x2+2x
的值域是[2,+∞);
③若函数f(x)=log2|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的减函数,则a的取值范围是(0,
1
3
);
⑤设方程 2-x=|lgx|的两个根为x1,x2,则  0<x1x2<1.
其中正确说法的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列五种说法:
①函数y=f(-x+2)与y=f(x-2)的图象关于y轴对称;
②函数y=(
1
2
)x2+2x
的值域是[2,+∞);
③若函数f(x)=log2|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的减函数,则a的取值范围是(0,
1
3
);
⑤设方程 2-x=|lgx|的两个根为x1,x2,则  0<x1x2<1.
其中正确说法的序号是______.

查看答案和解析>>


同步练习册答案