精英家教网 > 小学数学 > 题目详情
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予证明.
分析:(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
解答:(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,
在矩形ABCD中,AD∥BC,
所以∠B′EF=∠BFE,
所以∠B′FE=∠B'EF,
所以B′F=BE,
所以B′E=BF;

(2)答:a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a2+b2=c2
证明:连接BE,
由(1)知B′E=BF=c,
因为B′E=BE,
所以四边形BEB′F是平行四边形,
所以BE=c.
在△ABE中,∠A=90°,
所以AE2+AB2=BE2
所以AE=a,AB=b,
所以a2+b2=c2

(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
由(1)知B′E=BF=c,
所以BE=c,
在△ABE中,AE+AB>BE,
所以a+b>c.
点评:此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.
第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;
第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(2)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;
第三,解题策略多样化在本题中得到了充分的体现.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

课本中,把长与宽之比为
2
的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=
2
,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

查看答案和解析>>

科目:小学数学 来源: 题型:

如图,一张矩形纸片,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的
正方形
正方形

查看答案和解析>>

科目:小学数学 来源: 题型:

精英家教网如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是
 

查看答案和解析>>

同步练习册答案