9£®ÎÒÊÐijˮ¹ûÉú²ú»ùµØ£¬ÓÃ30Ãû¹¤È˽øÐвÉÕª»ò¼Ó¹¤Ë®¹û£¬Ã¿Ãû¹¤ÈËÖ»ÄÜ×öÆäÖÐÒ»Ï×÷£®²ÉÕªµÄ¹¤ÈËÿÈË¿ÉÒÔ²Éժˮ¹û400ǧ¿Ë£¬¼Ó¹¤¹ÞÍ·µÄ¹¤ÈËÿÈ˿ɼӹ¤300ǧ¿Ë£®£¨¼Ó¹¤Ë®¹ûÊýÁ¿²»ÄܶàÓÚ²ÉÕªÊýÁ¿£©ÉèÓÐxÃû¹¤È˽øÐÐË®¹û²ÉÕª£®
£¨1£©¢Ù¼Ó¹¤¹ÞÍ·µÄ¹¤ÈËΪ£¨30-x£©ÈË£¬¿ÉÒÔ¼Ó¹¤¹ÞÍ·300£¨30-x£©Ç§¿Ë£»£¨Óú¬xµÄʽ×Ó±íʾ£©
¢Ú²Éժˮ¹ûµÄ¹¤ÈËÖÁÉÙ¶àÉÙÈË£¿
£¨2£©Ö±½Ó³öÊۺͼӹ¤¹ÞÍ·³öÊÛµÄÀûÈóÈç±í£º
ÏúÊÛ·½Ê½ Ö±½Ó³öÊÛ ¼Ó¹¤³É¹ÞÍ·ÏúÊÛ
 ÀûÈó£¨Ôª/ǧ¿Ë£© 410
Ҫʹֱ½Ó³öÊÛËù»ñÀûÈó²»³¬¹ý×ÜÀûÈóµÄ25%£¬ÇëÎÊÓ¦ÈçºÎ·ÖÅ乤ÈË£¿Ëù»ñ×î´óÀûÈóÊǶàÉÙ£¿

·ÖÎö £¨1£©¢ÙÀûÓÃ30Ãû¹¤È˽øÐвÉÕª»ò¼Ó¹¤Ë®¹û£¬¼Ó¹¤¹ÞÍ·µÄ¹¤ÈËÿÈ˿ɼӹ¤300ǧ¿Ë£¬±íʾ³ö¸÷Á¿¼´¿É£»
¢ÚÀûÓüӹ¤Ë®¹ûÊýÁ¿²»ÄܶàÓÚ²ÉÕªÊýÁ¿µÃ³ö²»µÈʽ¹ØÏµÇó³ö¼´¿É£»
£¨2£©±íʾ³öÖ±½Ó³öÊۺͼӹ¤ºóµÄÀûÈ󣬽ø¶øµÃ³ö²»µÈ¹ØÏµÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©¢Ù¼Ó¹¤¹ÞÍ·µÄ¹¤ÈËΪ £¨30-x£©ÈË£¬¿ÉÒÔ¼Ó¹¤¹ÞÍ· 300£¨30-x£©Ç§¿Ë£»£¨Óú¬xµÄʽ×Ó±íʾ£©
¹Ê´ð°¸Îª£º£¨30-x£©£¬300£¨30-x£©£»

¢ÚÉè²Éժˮ¹ûµÄ¹¤ÈËΪxÈË£¬¸ù¾ÝÌâÒâ¿ÉµÃ£º
400x¡Ý300£¨30-x£©£¬
½âµÃ£ºx¡Ý$\frac{90}{7}$=12$\frac{6}{7}$£®
´ð£º²Éժˮ¹ûµÄ¹¤ÈËÖÁÉÙ13ÈË£»

£¨2£©Éè×ÜÀûÈóΪw£¬Ôòw=4¡Á[400x-300£¨30-x£©]+10¡Á300£¨30-x£©=-200x+54000£¬
¡ßÖ±½Ó³öÊÛËù»ñÀûÈó²»³¬¹ý×ÜÀûÈóµÄ25%£¬
¡à4¡Á[400x-300£¨30-x£©]¡Ü25%£¨-200x+54000£©£¬
½âµÃ£ºx¡Ü17$\frac{7}{19}$£¬
ÓÉ¢ÚµÃ12$\frac{6}{7}$¡Üx¡Ü17$\frac{7}{19}$£¬
µ±x=13ʱ£¬w×î´ó£¬w=-200¡Á13+54000=51400£¨Ôª£©£®
´ð£º²Éժˮ¹ûµÄ¹¤ÈËΪ13ÈË£¬¼Ó¹¤¹ÞÍ·µÄ¹¤ÈËÓÐ17ÈË£¬ÀûÈó×î´óΪ51400Ôª£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÒ»ÔªÒ»´Î²»µÈʽµÄÓ¦Ó㬸ù¾ÝÌâÒâ·Ö±ð±íʾ³ö¼Ó¹¤ºóµÄÀûÈóÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ò»ÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+3y=2}\\{x-2y=7}\end{array}\right.$µÄ½âµÄÇé¿öÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=8}\\{y=-2}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=9}\\{y=1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®4¸ö´óСÏàͬµÄÕý·½Ìå»ýľ°Ú·Å³ÉÈçͼËùʾµÄ¼¸ºÎÌ壬ÆäÖ÷ÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬ÒÑÖªµãA£¨5$\sqrt{3}$£¬0£©£¬Ö±Ïßy=x+b£¨b£¾0£©ÓëyÖá½»ÓÚµãB£¬Á¬½ÓAB£¬¡Ï¦Á=75¡ã£¬Ôòb=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßABÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢µãB£¬Ö±ÏßCDÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢µãD£¬ABÓëCDÏཻÓÚµãE£¬Ïß¶ÎOA£¬OCµÄ³¤ÊÇÒ»Ôª¶þ´Î·½³Ìx2-18x+72=0µÄÁ½¸ù£¨OA£¾OC£©£¬BE=5£¬tan¡ÏABO=$\frac{3}{4}$£®
£¨1£©ÇóµãA¡¢µãC¡¢µãEµÄ×ø±ê£»
£¨2£©Çósin¡ÏDCOµÄÖµ£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔµãC¡¢µãE¡¢µãPΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷DCOÏàËÆ£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò£º$\frac{1}{2}$x-2£¨x-$\frac{1}{3}$y2£©+£¨-$\frac{3}{2}$x+$\frac{1}{3}$y2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺
£¨1£©9$\sqrt{45}$¡Â3$\sqrt{\frac{1}{5}}$¡Á$\frac{3}{2}$$\sqrt{\frac{2}{3}}$
£¨2£©|1-$\sqrt{2}$|+$\frac{1}{\sqrt{3}+\sqrt{2}}$+£¨¦Ð-$\sqrt{2}$£©0
£¨3£©2$\sqrt{\frac{1}{8}}$-$\sqrt{\frac{1}{2}}$-£¨$\sqrt{18}$+$\sqrt{2}$-2$\sqrt{\frac{1}{3}}$£©
£¨4£©£¨$\sqrt{5}$-$\sqrt{3}$+$\sqrt{2}$£©£¨$\sqrt{5}$+$\sqrt{3}$-$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¾­¹ýA£¨1£¬0£©£¬B£¨-3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬¹ýµãAµÄÖ±ÏßÓëyÖá½»¸ÉµãD£¬ÓëÅ×ÎïÏß½»ÓÚµãM£¬ÇÒtan¡ÏBAM=1£®
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôµãQÔÚÅ×ÎïÏßÉÏ£¬ÇÒS¡÷QOC=4S¡÷AOC£¬ÇóµãQµÄ×ø±ê£»
£¨3£©PΪÅ×ÎïÏßÉÏÒ»¶¯µã£¬EΪֱÏßADÉÏÒ»¶¯µã£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹ÒÔµãA¡¢P¡¢EΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öËùÓеãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Å×ÎïÏßy=ax2+bx+2Óë×ø±êÖá½»ÓÚA¡¢B¡¢CÈýµã£¬ÆäÖÐB£¨4£¬0£©¡¢C£¨-2£¬0£©£¬Á¬½ÓAB¡¢AC£¬ÔÚµÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãD£¬¹ýD×÷DE¡ÍxÖᣬ´¹×ãΪE£¬½»ABÓÚµãF£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚDEÉÏ×÷µãG£¬Ê¹GµãÓëDµã¹ØÓÚFµã¶Ô³Æ£¬ÒÔGΪԲÐÄ£¬GDΪ°ë¾¶×÷Ô²£¬µ±¡ÑGÓëÆäÖÐÒ»Ìõ×ø±êÖáÏàÇÐʱ£¬ÇóGµãµÄºá×ø±ê£»
£¨3£©¹ýDµã×÷Ö±ÏßDH¡ÎAC½»ABÓÚH£¬µ±¡÷DHFµÄÃæ»ý×î´óʱ£¬ÔÚÅ×ÎïÏߺÍÖ±ÏßABÉÏ·Ö±ðÈ¡M¡¢NÁ½µã£¬²¢Ê¹D¡¢H¡¢M¡¢NËĵã×é³ÉƽÐÐËıßÐΣ¬ÇëÄãÖ±½Óд³ö·ûºÏÒªÇóµÄM¡¢NÁ½µãµÄºá×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸