精英家教网 > 初中数学 > 题目详情

【题目】某游泳池有水4000m3 , 先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:

时间x(分钟)

10

20

30

40

水量y(m3

3750

3500

3250

3000


(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.

【答案】
(1)解:由图表可知,每10分钟放水250m3

所以,第80分钟时,池内有水4000﹣8×250=2000m3

答:池内有水2000m3


(2)解:设函数关系式为y=kx+b,

∵x=20时,y=3500,

x=40时,y=3000,

解得:

所以,y=﹣25x+4000(0≤x≤160).


【解析】(1)观察不难发现,每10分钟放水250m3 , 然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmCBnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1S2的大小关系为(  )

A. S1>S2 B. S1<S2 C. S1=S2 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点

(1) 试求a和b的值

(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?

(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P(a,a)是反比例函数y= 在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是(  )
A.3
B.4
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当a≠0时,函数y=ax+1与函数y= 在同一坐标系中的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.

(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2 . 在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.

(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.

查看答案和解析>>

同步练习册答案