【题目】如图,二次函数y=ax2+bx﹣4
的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.
(1)求这个二次函数的表达式;
(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.
①求∠OBD的度数;
②求点P的坐标.
![]()
【答案】(1)二次函数的表达式为y=
x2﹣3
x﹣4
;(2)①60°,②(-
,
)
【解析】分析:(1)代入A、B点坐标即可求得a、b的值,即可解题;
(2)①易证△BOD是含30°角的直角三角形,即可解题;
②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,易证△CBF∽△PBE,可得
,即可解题.
详解:(1)由题意知:
,解得
.
∴该二次函数的表达式为y=
x2﹣3
x﹣4
;
(2)①∵当x=0时,y=﹣4
.
∴抛物线与y轴交点D的坐标为(0,﹣4
).
∵在△BOD中,∠BOD=90°,OB=4,OD=4
,
∴BD=
=8,即BD=2OB,
∴∠ODB=30°.
∴∠OBD=60°;
②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,
![]()
∵x=3时,m=﹣4
.
∴点C的坐标为(3,﹣4
).
∵CD∥x轴,
∴CD=3,∠CDB=60°,∠DCF=30°.
∴DF=
CD=
,CF=
,
∵BD=8,
∴BF=8﹣
=
,
设点P的坐标为(x,
x2﹣3
x﹣4
).
则PE=﹣
x2+3
x+4
,BE=4﹣x,
∵∠CBP=∠OBD=60°,
∴∠CBF=∠PBE.
∵∠CFB=∠PEB=90°.
∴△CBF∽△PBE.
∴
.
∴
,
解得:x1=4(舍去),x2=﹣
.
∵当x=﹣
时,y=﹣
.
∴点P的坐标为(﹣
,﹣
).
科目:初中数学 来源: 题型:
【题目】如图,铁路上A,B两点相距25 km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15 km,CB=10 km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】QQ运动记录的小莉爸爸2017年2月份7天步行的步数(单位:万步)如下表:
日期 | 2月6日 | 2月7日 | 2月8日 | 2月9日 | 2月10日 | 2月11日 | 2月12日 |
步数 | 2.1 | 1.7 | 1.8 | 1.9 | 2.0 | 1.8 | 2.0 |
(1)制作适当的统计图表示小莉爸爸这7天步行的步数的变化趋势;
(2)求小莉爸爸这7天中每天步行的平均步数;
(3)估计小莉爸爸2月份步行的总步数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)
![]()
(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△
;平移△ABC,若A对应的点
坐标为(-4,-5),画出△
;
(2)若△
绕某一点旋转可以得到△
,直接写出旋转中心坐标是__________;
(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:
(1)快车的速度为 km/h,慢车的速度为 km/h,甲乙两地的距离为 km;
(2)求出发多长时间,两车相距100km;
(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)
![]()
(1)求B地在数轴上表示的数;
(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;
(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:
![]()
![]()
根据以上信息解决下列问题:
(1)在统计表中,a的值为 ,b的值为 ;
(2)在扇形统计图中,八年级所对应的扇形圆心角为 度;
(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图
【1】求这10个样本数据的平均数、众数和中位数;
【2】根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7 t的约有多少户.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0
![]()
(1)a= ,b= ,并在数轴上面出A、B两点;
(2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的2倍;
(3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com