【题目】如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,求证:∠AEF=90°.
【答案】证明:∵ABCD为正方形,
∴AB=BC=CD=DA,∠B=∠C=∠D=90°.
设AB=BC=CD=DA=a,
∵E是BC的中点,且CF= CD,
∴BE=EC= a,CF= a,
在Rt△ABE中,由勾股定理可得AE2=AB2+BE2= a2,
同理可得:EF2=EC2+FC2= a2,AF2=AD2+DF2= a2,
∵AE2+EF2=AF2,
∴△AEF为直角三角形,
∴∠AEF=90°.
【解析】利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.
【考点精析】本题主要考查了勾股定理的概念和勾股定理的逆定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2017在y轴的正半轴上,点B1,B2,B3,…,B2017在二次函数y=x2位于第一象限的图象上.若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2016B2017A2017都为正三角形,则△A2016B2017A2017的边长为____.
(第10题)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC经过一次平移到△DFE的位置,请回答下列问题:
(1)点C的对应点是点__________,∠D=__________,BC=__________;
(2)连接CE,那么平移的方向就是__________的方向,平移的距离就是线段__________的长度,可量出约为__________cm;
(3)连接AD,BF,BE,与线段CE相等的线段有__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列函数关系中,不能看做二次函数y=ax2+bx+c(a≠0)模型的是( )
A. 圆的半径和其面积的变化关系
B. 我国人口年自然增长率x,两年中从12亿增加到y亿的x与y的变化关系
C. 掷铅球水平距离与高度的关系
D. 面积一定的三角形底边与高的关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=(m2-m)x2+(m-1)x+2-2m.
(1)若这个函数是二次函数,求m的取值范围.
(2)若这个函数是一次函数,求m的值.
(3)这个函数可能是正比例函数吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲船和乙船分别从A港和C港同时出发,各沿图中箭头所指的方向航行(如图所示).现已知甲、乙两船的速度分别是16海里/时和12海里/时,且A,C两港之间的距离为10海里.问:经过多长时间,甲船和乙船之间的距离最短?最短距离为多少?(注:题中的“距离”都是指直线距离,图中AC⊥CB.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com