精英家教网 > 初中数学 > 题目详情

【题目】将正比例函数ykxk是常数,k≠0)的图象,沿着y轴的一个方向平移|k|个单位后与x轴、y轴围成一个三角形,我们称这个三角形为正比例函数ykx的坐标轴三角形,如果一个正比例函数的图象经过第一、三象限,且它的坐标轴三角形的面积为5,那么这个正比例函数的解析式是__

【答案】

【解析】

分别求出向上和向下平移时,与坐标轴的交点坐标,再根据它的坐标轴三角形的面积为5,求出k的值即可.

解:正比例函数的图象经过第一、三象限,

当正比例函数是常数,的图象,沿着轴向上平移个单位时,所得函数的解析式为

如图示:

轴的交点坐标为,与轴的交点坐标为

它的坐标轴三角形的面积为5

这个正比例函数的解析式是

当正比例函数是常数,的图象,沿着轴向下平移个单位时,所得函数的解析式为

如图示:

轴的交点坐标为,与轴的交点坐标为

它的坐标轴三角形的面积为5

这个正比例函数的解析式是

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,.点出发沿运动,速度为每秒,点是点为对称中心的对称点,点运动的同时,点出发沿运动,速度为每秒,当点到达顶点时,同时停止运动,设两点运动时间为秒.

1)当为何值时,

2)设四边形的面积为,求关于的函数关系式;

3)四边形面积能否是面积的?若能,求出此时的值;若不能,请说明理由;

4)当为何值时,为等腰三角形?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yx2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣10),二次函数yax2+bx+ca≠0)的图象经过ABD三点.

1)求二次函数的解析式;

2)如图1,已知点G1m)在抛物线上,作射线AG,点H为线段AB上一点,过点HHEy轴于点E,过点HHFAG于点F,过点HHMy轴交AG于点P,交抛物线于点M,当HEHF的值最大时,求HM的长;

3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:

1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1

2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A10),B﹣30)两点.

1)求该抛物线的解析式;

2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;

3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,斜边,将绕点顺时针旋转,得到,连接.点从点出发,沿方向匀速行动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停让运动.连接于点.设运动时间为,解答下列问题:

1)当为何值时,平分

2)设四边形的面积为,求的函教关系式;

3)在运动过程中,当时,求四边形的面积;

4)在运动过程中,是否存在某一时刻,使点为线段的中点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:

)本次接受随机抽样调查的学生人数为   ,图①中m的值为   

)求本次调查获取的样本数据的众数、中位数和平均数;

)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

查看答案和解析>>

同步练习册答案