精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,AM为⊙O的切线,A为切点.过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.

(1)求∠AOB的度数;

(2)当⊙O的半径为4cm时,求CD的长.

【答案】(1)∠AOB=120°;(2)EC=2.

【解析】

(1)AM为圆O的切线,利用切线的性质得到OAAM垂直,再由BDAM垂直,得到OABD平行,利用两直线平行内错角相等得到一对角相等;再由OC为角平分线得到一对角相等,以及OB=OC,利用等边对等角得到一对角相等,然后利用等量代换得到∠BOC=∠OBC=∠OCB=60°,从而得出答案;

(2),过点OOE⊥BD于点E,如图,进而得出四边形OADE是矩形,再结合(1)的解答过程进行推理,即可得出DC的长.

(1)∵AM为圆O的切线,

∴OA⊥AM,

∵BD⊥AM,

∴∠OAD=∠BDM=90°,

∴OA∥BD,

∴∠AOC=∠OCB,

∵OB=OC,

∴∠OBC=∠OCB,

∵OC平分∠AOB,

∴∠AOC=∠BOC,

∴∠BOC=∠OCB=∠OBC=60°,

∴∠AOB=120°;

(2)过点O作OE⊥BD于点E,

∵∠BOC=∠OCB=∠OBC=60°,

∴△OBC是等边三角形,

∴BE=EC=2,

∵∠OED=∠EDA=∠OAD=90°,

∴四边形OADE是矩形,

∴DE=OA=4,

∴EC=DC=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+cbc均为常数的图象经过两点A(2,0),B(0,﹣6).

(1)求这个二次函数的解析式

(2)若点Cm,0)(m>2)在这个二次函数的图象上连接ABBC求△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表8.

请根据图表中的信息,解答下列问题:

(1)表中的a=______,b=______,中位数落在________组,将频数分布直方图补全;

(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?

(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出2人向全校同学作读书心得报告,请用画树状图或列表法求抽取的2名学生刚好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,,点P在以斜边AB为直径的半圆上,MPC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC外接圆⊙O的直径,且∠BAE=C.

(1)求证:AE与⊙O相切于点A;

(2)若AEBC,BC=2,AC=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点AC分别在xy轴的正半轴上,点D为对角线OB的中点,反比例函数)在第一象限内的图象经过点D,且与ABBC分别交于EF两点,若四边形BEDF的面积为4.5,则的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的图象与轴交于两点,与轴交于点,直线经过点,与抛物线交于另一点.已知.

(1)求抛物线与直线的解析式;

(2)如图1,若点轴下方抛物线上一点,过点于点,过点轴交抛物线于点,过点轴于点为直线上一点,且.点为第四象限内一点,且在直线上方,连接.记.当取得最大值时,求出点的坐标,并求出此时的最小值.

(3)如图2,将点沿直线方向平移13个长度单位到点,过点轴,交抛物线于点.动点轴上一点,连接,再将沿直线翻折为(点在同一平面内),连接,当为等腰三角形时,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tanCDE= 时,则线段CF的长度为_____

查看答案和解析>>

同步练习册答案