【题目】如图,AB是⊙O的直径,AD,BD是弦,点P在BA的延长线上,且
,延长PD交圆的切线BE于点E.
![]()
(1)求证:PD是⊙O的切线;
(2)若
,
,求PA的长.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 (直接写出结论,不必证明)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=
(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=
S△BOC,求点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线F1:y=ax2+bx﹣1(a>1)与x轴交于点A、B(点A在点B的左侧),与y轴于点C,已知点A的坐标为(﹣
,0),
(1)直接写出b= (用含a的代数式表示);
(2)求点B的坐标;
(3)设抛物线F1的顶点为P1,将该抛物线平移后得到抛物线F2,抛物线F2的顶点P2满足P1P2∥BC,并且抛物线F2过点B,
①设抛物线F2与直线BC的另一个交点为D,判断线段BC与CD的数量关系(不需证明),并直接写出点D的坐标;
②求出抛物线F2与y轴的交点纵坐标的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线
的顶点为
,与
轴交于
、
两点,且
,与
轴交于点
.
求抛物线的函数解析式;
求
的面积;
能否在抛物线第三象限的图象上找到一点
,使
的面积最大?若能,请求出点
的坐标;若不能,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4
,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连结EF,求
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的项点A、C分别在
、
轴的正半轴上,点B点反比例函数
(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P在
轴的上方,且满足![]()
![]()
(1)若点P在这个反比例函数的图象上,求点P的坐标;
(2)连接PO、PA,求PO+PA的最小值;
(3)若点Q在平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在等边
中,点D是边AC上一点,连接BD,将
绕着点B逆时针旋转
,得到
,连接ED,则下列结论中:①
;②
;③
;④
,其中正确结论的序号是
![]()
![]()
A. ①② B. ①③ C. ②③ D. ①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com