精英家教网 > 初中数学 > 题目详情
7.一次函数y=kx+b的图象与反比例函数y=$\frac{-2}{x}$的图象相交于A(-1,m),B(n,-1)两点.
(1)写出这个一次函数的表达式;
(2)画出函数图象草图,并据此写出使一次函数值大于反比例函数值的x的取值范围.

分析 (1)先把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n,于是确定A点坐标为(-1,2),B点坐标为(2,-1),然后利用待定系数法求直线AB的解析式;
(2)根据函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.

解答 解:(1)把A(-1,m),B(n,-1)分别代入y=$\frac{-2}{x}$,
得-m=-2,-n=-2,解得m=2,n=2,
所以A点坐标为(-1,2),B点坐标为(2,-1),
把A(-1,2),B(2,-1)代入y=kx+b得$\left\{\begin{array}{l}{-k+b=2}\\{2k+b=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=1}\end{array}\right.$,
所以这个一次函数的表达式为y=-x+1;
(2)当x<-1或0<x<2时,一次函数的值大于反比例函数的值.

点评 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=13cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.等腰三角形顶角为120°,底边上的高为2.5厘米,则腰长为5厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)如图1,C为线段BD上的一个动点(不与点B、D重合),在BD同侧分别作等边△ABC和等边△CDE,AD与BE相交于点F,求证:△ACD≌△BCE.
(2)将△CDE绕C点旋转至如图2,在旋转过程中,∠AFB的大小是否发生改变?若不改变,请求出∠AFB的度数;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|+$\sqrt{m+n-18}$=0.
(1)求线段AB、CD的长;
(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;
(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①$\frac{PA-PB}{PC}$是定值;②$\frac{PA+PB}{PC}$是定值,请选择正确的一个并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=26,BD=24,则线段MN长为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算.
(1)(-2)3×$\sqrt{(-4)^{2}}$+$\root{3}{(-4)^{3}}$×($\frac{1}{2}$)2-$\root{3}{27}$
(2)|1$-\sqrt{2}$|+$\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)($\sqrt{6}$$-\sqrt{\frac{1}{2}}$)×($\sqrt{24}$$+2\sqrt{\frac{2}{3}}$)
(2)($\sqrt{6}$$-2\sqrt{15}$)×$\sqrt{3}-6\sqrt{\frac{1}{2}}$
(3)($\sqrt{3}+1$)2
(4)$\sqrt{8}$$+\sqrt{32}$$+\sqrt{18}$$-\sqrt{24}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图(1)所示,直线y=$\sqrt{3}$x+6交x、y轴于点A、B,M为y轴正半轴上一点,⊙M过A、B,交x轴于另一点C.

(1)求M点的坐标;
(2)如图 (2)P是弧BC上一动点,连PA、PB、PC,当P运动变化时,求证:PB+PC=PA;
(3)如图(3),点N是线段BM上一动点(不与B、M重合),过N点作DE⊥AB交⊙M与D、E,连接AE、BD,当点N在运动的过程中,下列两个结论:①AE+BD的值不变;②AE2+BD2的值不变.其中有一个成立,请选择并求出其值.

查看答案和解析>>

同步练习册答案