分析 (1)先由|m-2n|+$\sqrt{m+n-18}$=0.根据非负数的性质求出n=6,m=12,即可得到AB=12,CD=6;
(2)需要分类讨论:①如图1,当点C在点B的右侧时,根据“M、N分别为线段AC、BD的中点”,先计算出AM、DN的长度,然后计算MN=AD-AM-DN;②如图2,当点C位于点B的左侧时,利用线段间的和差关系求得MN的长度;
(3)计算①或②的值是一个常数的,就是符合题意的结论.
解答 解:(1)∵|m-2n|+$\sqrt{m+n-18}$=0,
∴m-2n=0,m+n-18=0,
∴n=6,m=12,
∴AB=12,CD=6;
(2)如图1,∵M、N分别为线段AC、BD的中点,
∴AM=$\frac{1}{2}$AC=$\frac{1}{2}$(AB+BC)=8,
DN=$\frac{1}{2}$BD=$\frac{1}{2}$(CD+BC)=5,
∴MN=AD-AM-DN=9;
如图2,∵M、N分别为线段AC、BD的中点,
∴AM=$\frac{1}{2}$AC=$\frac{1}{2}$(AB-BC)=4,
DN=$\frac{1}{2}$BD=$\frac{1}{2}$(CD-BC)=1,
∴MN=AD-AM-DN=12+6-4-4-1=9;
(3)②正确.理由如下:
∵$\frac{PA+PB}{PC}$=$\frac{(PC+AC)(PC-BC)}{PC}$=$\frac{2PC}{PC}$=2,
∴②$\frac{PA+PB}{PC}$是定值2.
点评 本题考查了一元一次方程的应用,比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com