分析 (1)由⊙O是△ABC的内切圆,得到OE⊥BC,OF⊥AF,推出四边形CEOF是矩形,于是得到结论;
(2)根据勾股定理得到BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=8,根据切线的性质列方程组即可得到结论;
(3)解直角三角形得到AB=2AC=2$\sqrt{3}$,BC=$\sqrt{3}$AC=3,根据切线的性质列方程组即可得到结论.
解答 解:(1)∵⊙O是△ABC的内切圆,
∴OE⊥BC,OF⊥AF,
∵∠C=90°,
∴∠C=∠OEC=∠OFC=90°,
∴四边形CEOF是矩形,
∵OE=OF,
∴四边形CEOF为正方形;
(2)∵∠C=90°,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=8,
∵⊙O是△ABC的内切圆,
∴AD=AF,BD=BE,CE=CF,
∴$\left\{\begin{array}{l}{AD+BE=10}\\{AD+CF=6}\\{BE+CF=8}\end{array}\right.$,
∴AD=4,BE=6,CF=2;
(3)∵∠B=30°,AC=$\sqrt{3}$,
∴AB=2AC=2$\sqrt{3}$,BC=$\sqrt{3}$AC=3,
∴$\left\{\begin{array}{l}{AD+BD=2\sqrt{3}}\\{AD+CF=\sqrt{3}}\\{BE+CF=3}\end{array}\right.$,
∴CF=$\frac{3-\sqrt{3}}{4}$,
∴△ABC的内切圆半径是$\frac{3-\sqrt{3}}{4}$.
点评 本题考查的是三角形的内切圆与内心,熟知三角形的内心就是三角形三个内角角平分线的交点是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 400名学生是总体 | B. | 每个学生是个体 | ||
| C. | 该调查的方式是普查 | D. | 2000名学生的视力情况是总体 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com