精英家教网 > 初中数学 > 题目详情
14.有若干张卡片,上面分别标有数字6,12,18,24…后一张卡片上的数比前一张卡片上的数大6,小黄拿了三张相邻的卡片,且这三张卡片上的数字之和为342.
(1)小黄拿到了哪三张卡片?
(2)小黄能否拿到数字之和等于86的三张相邻的卡片?如果能,请求出这三张卡片上的数字分别是多少;如果不能,请说明理由.

分析 (1)设这三张卡片上的数字为:x-6,x,x+6,根据题意列方程求解即可.
(2)因为卡片上的数字均为正整数,与(1)同法只需验证x是否为正整数即可.

解答 解:(1)设这三张卡片上的数字为:x-6,x,x+6
则:(x-6)+x+(x+6)=342,
3x=342
x=114
故:这三个数为:108,114,120
(2)小黄不可能拿到数字之和等于86的三张相邻的卡片,理由如下:
设这三张卡片上的数字为:x-6,x,x+6
小黄若拿到数字之和等于86,则:
(x-6)+x+(x+6)=86
3x=86
x=28$\frac{2}{3}$
因为卡片上的数字均为正整数,x不符合题意
所以,小黄不可能拿到数字之和等于86的三张相邻的卡片.

点评 本题考查了数字的变化规律问题,解题的关键是根据题意设未知数列方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.认真计算,并写清解题过程
(1)-42×$\frac{5}{8}$-(-8)×0.125×(-2)3
(2)49$\frac{17}{21}$+(-78.21)+27$\frac{4}{21}$+(-21.79)
(3)(-4)×|-3|-4÷(-2)-|-5|
(4)($\frac{1}{9}$-$\frac{1}{6}$-$\frac{1}{18}$)×(-36)
(5)-4.5+(-5.2)-9.6-(-6.4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:a、b互为相反数,c、d互为倒数,x的绝对值是2,y不能作除数,求2(a+b)2010-2(cd)2013+$\frac{1}{x}$+y2014

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,⊙O是△ABC的内切圆,切点为D,E,F,∠C=90°,
(1)求证:四边形CEOF为正方形;
(2)若AB=10,AC=6,求AD、BE、CF长;
(3)若∠B=30°,AC=$\sqrt{3}$,求△ABC的内切圆半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知双曲线y=$\frac{k}{x}$(x>0)经过矩形OABC的边AB,BC的中点F,E,且四边形OEBF的面积为2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,等边三角形ABC的边长为6cm,它的高AD与边AB的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.若a、b为有理数,在数轴上的位置如图所示,化简:|a+b|+|a-b|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)依次连结2×2方格四条边的中点,形成如图1所示的阴影正方形,设每个小正方形的边长为1个单位,则可以得到阴影正方形的面积为2,边长为$\sqrt{2}$;
(2)请你在图2的3×3的方格中,构造一个面积为5的正方形,使这个正方形的每个顶点都落在小方格的格点处;
(3)请画两个三角形,使得图3所画的三角形三边长分别为$\sqrt{2}$,$\sqrt{5}$,3;图4所画的三角形三边长分别为1,$\sqrt{5}$,2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的一元二次方程(m-2)x2+3x+m2-4=0有一个解是0.
(1)求m的值;
(2)试求方程的另一个解.

查看答案和解析>>

同步练习册答案