【题目】某校在经典朗读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干名学生进行调查,绘制出两幅不完整的统计图,请你根据图中的信息解答下列问题:
(1)被调查的学生共有 人,图2中A等级所占的圆心角为_ 度。
(2)补全折线统计图。
(3)若该校共有学生1500人,请你估计全校评价B等级学生的人数。
【答案】(1)50,108;(2)详见解析;(3)600人
【解析】
(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.根据圆心角=360°×百分比计算即可求出图2中A等级所占的圆心角;
(2)用总数减去A、C、D中的人数,即可得到B组人数解决,根据B组人数,画出折线统计图即可.
(3)用样本估计总体的思想解决问题.
解:(1)设本次测试共调查了x名学生,
由题意得
=20%,解得x=50,
故本次测试共调查了50名学生,
A的圆心角=360°×=108°.
(2)B组人数=50-15-10-5=20(人),
折线图如图所示.
(3)1500×=600(人).
答:全校评价B等级学生的人数约有600人.
科目:初中数学 来源: 题型:
【题目】如图,在一笔直的海岸线上有、两个观测站,在的正东方向,(单位:)有一艘小船在点处,从测得小船在北偏西的方向,从测得小船在北偏东的方向.(结果保留根号)
(1)求点到海岸线的距离;
(2)小船从点处沿射线的方向航行一段时间后,到达点处,此时,从测得小船在北偏西的方向,求点与点之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,BE平分∠ABC,交AD于点E、F是BC上一点,且CF=AE,连接DF.
(1)求证:四边形BEDF是平行四边形;
(2)若∠ABC=70°,求∠CDF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,,,试回答下列问题:
(1)如图1所示,求证:.
(2)如图2,若点、在上,且满足,并且平分.求________度.
(3)在(2)的条件下,若平行移动,如图3,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(2)的条件下,如果平行移动的过程中,若使,求度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】万州长江三桥于2019年5月30日建成通车,三桥如一架巨大的竖琴屹立于平湖之上,巍峨挺拔,绚丽多彩,成为万州靓丽的风景。周末,小明和爷爷一同在大桥上匀速散步,他们散步的速度是50米/分,小明观察到同向车道上驶过的公交车间隔时间是10分钟40秒,假定同向的公交车都保持48千米/小时的速度匀速行驶(中途停靠站的时间忽略不计),且公交车从车站发车的时间间隔是固定的,则车站每隔______分钟发出一辆公交车。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.
(1)求甲、乙两种型号设备每台的价格;
(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E. 已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
(1)求证:DE=CF
(2)求BC+DE的值
(3)参考小明思考问题的方法,解决问题:
如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com