精英家教网 > 初中数学 > 题目详情
已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长;
(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;
(3)如图2,
(1)
,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
考点:相似形综合题,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,矩形的性质,特殊角的三角函数值
专题:综合题,压轴题,动点型,探究型
分析:(1)只需证明两对对应角分别相等即可证到两个三角形相似,然后根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
(2)由DP=
1
2
DC=
1
2
AB=
1
2
AP及∠D=90°,利用三角函数即可求出∠DAP的度数,进而求出∠OAB的度数.
(3)由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.
解答:解:(1)如图1,
①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°-∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
②∵△OCP与△PDA的面积比为1:4,
OC
PD
=
OP
PA
=
CP
DA
=
1
4
=
1
2

∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,∴CP=4,BC=8.
设OP=x,则OB=x,CO=8-x.
在Rt△PCO中,
∵∠C=90°,CP=4,OP=x,CO=8-x,
∴x2=(8-x)2+42
解得:x=5.
∴AB=AP=2OP=10.
∴边AB的长为10.

(2)如图1,
∵P是CD边的中点,
∴DP=
1
2
DC.
∵DC=AB,AB=AP,
∴DP=
1
2
AP.
∵∠D=90°,
∴sin∠DAP=
DP
AP
=
1
2

∴∠DAP=30°.
∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°,
∴∠OAB=30°.
∴∠OAB的度数为30°.

(3)作MQ∥AN,交PB于点Q,如图2.
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP,∠ABP=∠MQP.
∴∠APB=∠MQP.
∴MP=MQ.
∵MP=MQ,ME⊥PQ,
∴PE=EQ=
1
2
PQ.
∵BN=PM,MP=MQ,
∴BN=QM.
∵MQ∥AN,
∴∠QMF=∠BNF.
在△MFQ和△NFB中,
∠QMF=∠BNF
∠QFM=∠BFN
QM=BN

∴△MFQ≌△NFB.
∴QF=BF.
∴QF=
1
2
QB.
∴EF=EQ+QF=
1
2
PQ+
1
2
QB=
1
2
PB.
由(1)中的结论可得:
PC=4,BC=8,∠C=90°.
∴PB=
82+42
=4
5

∴EF=
1
2
PB=2
5

∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2
5
点评:本题是一道运动变化类的题目,考查了相似三角形的性质和判定、全等三角形的性质和判定、矩形的性质、等腰三角形的性质和判定、勾股定理、特殊角的三角函数值等知识,综合性比较强,而添加适当的辅助线是解决最后一个问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是(  )
A、
1
3
B、
2
5
C、
1
2
D、
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):
A:加强交通法规学习;
B:实行牌照管理;
C:加大交通违法处罚力度;
D:纳入机动车管理;
E:分时间分路段限行
调查数据的部分统计结果如下表:
管理措施回答人数百分比
A255%
B100m
C7515%
Dn35%
E12525%
合计a100%
(1)根据上述统计表中的数据可得m=
 
,n=
 
,a=
 

(2)在答题卡中,补全条形统计图;
(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=4
2
时,
①在P1(0,-3),P2(4,6),P34
2
,2)中可以成为正方形ABCD的“等距圆”的圆心的是
 

②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为
 

(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(
1
2
-1-2tan60°+
27
-|1-
3
|
(2)化简:
a2-b2
a2-ab
÷(a+
2ab+b2
a
).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,抛物线y=-x2+bx+c交x轴于点A、B,交y轴于点C,其中点B坐标为(1,0),同时抛物线还经过点(-2,3).
(1)求抛物线的解析式;
(2)是否存在直线y=kx+n(k≠0)与抛物线交于点M、N,使y轴平分△CMN的面积?若存在,求出k、n应满足的条件;若不存在,请说明理由;
(3)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移m(m>0)个单位,当EO平分∠CEH时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)

请根据图中提供的信息,回答下列问题:
(1)a=
 
%,并写出该扇形所对圆心角的度数为
 
,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
38
+(
2
-1)0=
 

查看答案和解析>>

同步练习册答案