精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于( )

A. 6:3:2 B. 2:1:1 C. 5:3:2 D. 1:1:1

【答案】C

【解析】

连结MF,如图,先证明MFCEA的中位线,则AE=2MF,AEMF,利用NEMF得到 ,即BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用ANMF得到 ,所以NQ=a,QM=a,再计算BN:NQ:QM的值.

连结MF,如图,

MAC的中点,EF=FC,

MFCEA的中位线,

AE=2MF,AEMF,

NEMF,

BN=NM,MF=2NF,

BN=a,NE=b,则NM=a,MF=2b,AE=4b,

AN=3b,

ANMF,

NQ=a,QM=a,

BN:NQ:QM=a:a:a=5:3:2.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是抛物线上的一动点,从点C沿抛物线向点A运动(点PA不重合),过点PPDy轴,交AC于点 D.

(1)求该抛物线的函数关系式及A、B两点的坐标;

(2)求点P在运动的过程中,线段PD的最大值;

(3)若点P与点Q重合,点Ex轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图取一根9.5 m长的标杆AB,在其上系一活动旗帜C,使标杆的影子落在平地和一堤坝的左斜坡上拉动旗帜使其影子正好落在斜坡底角顶点D若测得旗高BC=4.5 m影长BD=9 m影长DE=5 m请计算左斜坡的坡比(假设标杆的影子BD,DE均与坝底线DM垂直).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中,无论a取何值时,总是关于x的一元二次方程的是(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是ABF,CDE的内心,则O1O2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个求助没有用(使用求助可以让主持人去掉其中一题的一个错误选项).

(1)如果小明第一题不使用求助,那么小明答对第一道题的概率是  

(2)如果小明将求助留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

(3)从概率的角度分析,你建议小明在第几题使用求助.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)

语文

数学

英语

科学

95

95

80

150

105

90

90

139

100

100

85

139

若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?

2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中,一共调查了   名学生;

(2)补全条形统计图;

(3)若该校共有1500名学生,估计爱好运动的学生有   人;

(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案