精英家教网 > 初中数学 > 题目详情

【题目】某商场服装部销售一种名牌衬衫,平均每天可售出件,每件盈利元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价元时,平均每天可多卖出件.

(1)若商场要求该服装部每天盈利元,每件衬衫应降价多少元?

(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.

【答案】1)设每件应降价x元,由题意可列方程为(40-x30+2x=1200

解得x1=0x2=25

x=0时,能卖出30件;

x=25时,能卖出80件.

根据题意,x=25时能卖出80件,符合题意,不降价也能盈利1200元,符合题意.

因为要减少库存,所以应降价25元.

答:每件衬衫应降价25元;

2)设商场每天盈利为W元.

W=40-x)(30+2x

=-2x2+50x+1200

=-2x2-25x+1200

=-2x-12.52+1512.5

当每件衬衫降价为1213元时,商场服装部每天盈利最多.

【解析】

(1)本题的关键语“每件降价1元时,平均每天可多卖出2件”,设每件应降价x元,用x来表示出商场所要求的每件盈利的数额量,然后根据盈利1200元来列出方程;
(2)根据(1)中的方程,然后按一元二次方程的特点,来求出最大值.

解:(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,

解得x1=0,x2=25,

当x=0时,能卖出30件;

当x=25时,能卖出80件.

根据题意,x=25时能卖出80件,符合题意.

故每件衬衫应降价25元.

(2)设商场每天盈利为W元.

W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5

当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.

实践操作 如图①,在矩形纸片ABCD中,AD=8 cm,AB=12 cm.

第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.

第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.

第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

问题解决

(1)请在图②中证明四边形AEFD是正方形;

(2)请在图④中判断NF与ND′的数量关系,并加以证明;

(3)请在图④中证明△AEN是(3,4,5)型三角形.

    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知将一副三角板(直角三角板和直角三角板)的两个顶点重合于点.

1)如图1,将直角三角板绕点逆时针方向转动,当恰好平分时,的度数是 _.

2)如图2,当三角板摆放在内部时,作射线平分,射线平分,如果三角板内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

3)当三角板绕点继续转动到如图3所示的位置时,作射线平分,射线平分,请你求出此时钝角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:

进价(元/个)

售价(元/个)

电饭煲

200

250

电压锅

160

200

(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?

(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个,且电饭煲的数量不少于23个,问橱具店有哪几种进货方案?并说明理由;

(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西瓜经营户以2/千克的价格购进一批小型西瓜,以3/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低(  )元.

A.0.2或0.3

B.0.4

C.0.3

D.0.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,∠B=60°DBC上一点,过点DDEABE
1)连接AD,取AD中点F,连接CFCEFE,判断CEF的形状并说明理由
2)若BD=CD,将BED绕着点D逆时针旋转0n180),当点B落在RtABC的边上时,求出n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于整式(其中m是大于的整数).

1)若,且该整式是关于x的三次三项式,求m的值;

2)若该整式是关于x的二次单项式,求mn的值;

3)若该整式是关于x的二次二项式,则mn要满足什么条件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,∠ABC=CDA=90°BEAD于点E,且四边形ABCD的面积为144,则BE________

查看答案和解析>>

同步练习册答案