【题目】在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:
如果y′=,那么称点Q为点P的“关联点”.
例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”
为点(﹣5,﹣6).
(1)①点(2,1)的“关联点”为 ;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是 (填“点A”或“点B”).
(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,
那么点M的坐标为 ;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.
(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标
y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是 .
【答案】(1)(2,1),B;(2)(﹣1,2),(﹣1,﹣2);(3)﹣2<a<2.
【解析】
试题分析:(1)根据在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”,可得答案;
(2)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”,可得答案;
(3)根据在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”,可得P点自变量的取值范围,可得答案.
解:(1)①点(2,1)的“关联点”为(2,1);
②如果点A(3,﹣1)的关联点为(3,﹣1);
B(﹣1,3)的“关联点”为(﹣1,﹣3),
一个在函数的图象上,那么这个点是 B;
故答案为:(2,1),B;
(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”是(﹣1,2),
那么点M的坐标为(﹣1,2);
②如果点N*(m+1,2)是一次函数y=x+3图象上,
点N*(﹣1,2)的“关联点”(﹣1,﹣2),
点N的坐标是(﹣1,﹣2),
故答案为:(﹣1,2),(﹣1,﹣2);
(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,
当﹣2<x≤0时,0<y≤4,即﹣2<a≤0;
当x>0时,y=y′,即﹣4<y≤4,
﹣x2+4>﹣4,解得x<2,
即0<x<2,
综上所述:﹣2<x<2,
﹣2<a<2.
“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是﹣2<a<2,
故答案为:﹣2<a<2.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).
(1)求该抛物线的表达式;
(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;
(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是( )
A. 20 B. 28 C. 30 D. 31
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com