分析 (1)连接OD,由等边三角形的性质得出AB=BC,∠B=∠C=60°,证出△OBD是等边三角形,得出∠BOD=∠C,证出OD∥AC,得出DE⊥OD,即可得出结论;
(2)先证明△OCF是等边三角形,得出CF=OC=$\frac{1}{2}$BC=$\frac{1}{2}$AB=2,再由三角函数即可求出FH.
解答
解:(1)DE是⊙O的切线;理由如下:
连接OD,如图1所示:
∵△ABC是等边三角形,
∴AB=BC=AC,∠B=∠C=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°,
∴∠BOD=∠C,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)连接OF,如图2所示:![]()
∵OC=OF,∠C=60°,
∴△OCF是等边三角形,
∴CF=OC=$\frac{1}{2}$BC=$\frac{1}{2}$AB=2,
∵FH⊥BC,
∴∠FHC=90°,
∴FH=CF•sin∠C=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题考查了切线的判定、等边三角形的性质与判定、平行线的判定、三角函数;熟练掌握等边三角形的性质,并能进行推理论证与计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ∠AEB+22°=∠DEF | B. | 1+tan∠ADB=$\sqrt{2}$ | C. | 2BC=5CF | D. | 4cos∠AGB=$\sqrt{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.1×10-6西弗 | B. | 3.1×106西弗 | C. | 3.1×10-3西弗 | D. | 3.1×103西弗 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1.293×10-3 | B. | -1.293×103 | C. | -12.93×10-2 | D. | 0.1293×10-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com