考点:根与系数的关系,一元二次方程的解
专题:计算题
分析:先根据一元二次方程根的定义得到m2-m-2=0,即m2=m+2,化简m2+mn-2m-n得到mm2+mn-2m-n=n-(m+n)+2,再根据根与系数的关系得到m+n=1,mn=-2,然后利用整体代入的方法计算即可.
解答:解:∵m为方程x2-x-2=0的根,
∴m2-m-2=0,
∴m2=m+2,
∴m2+mn-2m-n=m+2+mn-2m-n
=mn-(m+n)+2,
∵m,n是方程x2-x-2=0两根,
∴m+n=1,mn=-2,
∴m2+mn-2m-n=-2-1+2=-1.
故答案为-1.
点评:本题考查了根与系数的关系:若x
1,x
2是一元二次方程ax
2+bx+c=0(a≠0)的两根时,x
1+x
2=
-,x
1x
2=
.也考查了一元二次方程根的定义.