【题目】如图,AB是⊙O的一条弦,C、D是⊙O上的两个动点,且在AB弦的异侧,连接CD.
(1)若AC=BC,AB平分∠CBD,求证:AB=CD;
(2)若∠ADB=60°,⊙O的半径为1,求四边形ACBD的面积最大值.
【答案】(1)证明见解析;(2).
【解析】
(1)证==即可得=,继而求证结论;
(2)如图,连接OA、OB、OC,OC交AB于H,由∠ADB=60°和AC=BC 求得∠ADC=∠BDC= =30°,OC⊥AB,AH=BH ,继而求出AB的长,由S四边形ABCD=S△ABD+ S△ABC可知,当D点为优弧AB的中点时,即CD为⊙O的直径时,四边形ACBD的面积最大,进而求解.
(1)∵AC=BC,
∴=
∵AB平分∠CBD,
∴∠ABC=∠ABD,
∴=,
∴=,
∴AB=CD;
(2)连接OA、OB、OC,OC交AB于H,如图,
∵=,
∴∠ADC=∠BDC=∠ADB=30°,OC⊥AB,AH=BH,
∴∠BOC=60°,
∴OH= OB=,BH= OH=,
∴AB=2BH=.
∵四边形ACBD的面积=S△ABC+S△ABD,
∴当D点到AB的距离最大时,S△ABD的面积最大,四边形ACBD的面积最大,此时D点为优弧AB的中点,
即CD为⊙O的直径时,四边形ACBD的面积最大,
∴四边形ACBD的面积最大值为 ×2=.
科目:初中数学 来源: 题型:
【题目】某灯饰商店销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似地看作一次函数.物价部门规定该品牌的护眼灯售价不能超过36元.
(1)如果该商店想要每月获得2000元的利润,那么销售单价应定为多少元?
(2)设该商店每月获得利润为(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线x=t与反比例函数y=,y=﹣的图象交于点A,B,直线y=2t与反比例y=,y=﹣的图象交于点C,D,其中常数t,k均大于0.点P,Q分别是x轴、y轴上任意点,若S△PCD=S1,S△ABQ=S2.则下列结论正确的是( )
A.S1=2tB.S2=4kC.S1=2S2D.S1=S2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线 y=ax+bx+c 的一部分,其对称轴为直线 x=2,若其与 x 轴的一个交点为(5,0),则由图象可知,不等式 ax+bx+c<0 的解集是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步普及足球知识,传播足球文化,某市在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
(1)获得一等奖的学生有 人;
(2)在本次知识竞赛活动中,A,B,C,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com