【题目】如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.
(1)求∠DCE的度数;
(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.
【答案】(1)22.5°,(2).
【解析】
试题分析:(1)由正方形的性质得到,∠BCD=90°,∠DBC=45°,推出AB=BE,根据三角形的内角和定理求出∠BCE=∠BEC=67.5°,根据∠DCE=∠DCB-∠BCE即可求出答案.
(2)连接BP,作EF⊥BC于F,则∠EFB=90°,得出△BEF是等腰直角三角形,从而求得BF=EF=,然后根据S△BPE+S△BPC=S△BEC,求得PM+PN=EF,即可求得.
试题解析:(1)在正方形ABCD中,∠BCD=90°,∠DBC=45°,
∵BE=BC,
∴AB=BE,
∴∠BCE=∠BEC=(180°-∠DBC)=67.5°,
∴∠DCE=∠DCB-∠BCE=90°-67.5°=22.5°,
(2)连接BP,作EF⊥BC于F,则∠EFB=90°,
∵∠EBF=45°,
∴△BEF是等腰直角三角形,
∵BE=BC=1,
∴BF=EF=,
∵PM⊥BD,PN⊥BC,
∴S△BPE+S△BPC=S△BEC,
即BEPM+BCPN=BCEF,
∵BE=BC,
∴PM+PN=EF=.
科目:初中数学 来源: 题型:
【题目】某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).
组别 | 阅读时间x(时) | 人数 |
A | 0≤x<10 | k |
B | 10≤x<20 | 100 |
C | 20≤x<30 | m |
D | 30≤x<40 | 140 |
E | x≥40 | n |
请结合以上信息解答下列问题
(1)阅读时间分组统计表中k、m、n的值分别是 、 、 ;
(2)补全“阅读人数分组统计图”;
(3)若全校有3000名学生,请估算全校课外阅读时间在20小时以下(不含20小时)的
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为( )
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知, , 与成正比例, 与成反比例,并且当时, ,当时, .
()求关于的函数关系式.
()当时,求的值.
【答案】();(), .
【解析】分析:(1)首先根据与x成正比例, 与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出 和与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令y=0,即可求出x的值.
本题解析:
()设, ,
则,
∵当时, ,当时, ,
∴
解得, ,
∴关于的函数关系式为.
()把代入得,
,
解得: , .
点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.
【题型】解答题
【结束】
24
【题目】如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.
(1)求证:;
(2)若菱形的边长为2, .求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若AF=6,EF=2 ,求⊙O 的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的形状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有__人,a+b=__,m=___;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系中,的三个顶点坐标分别是,,,其中,点C关于x轴的对称点为,是等腰直角三角形.
的值等于______;请直接写出
把点A沿直线翻折,落在点的位置,如果点D在第一象限,是以为腰的等腰直角三角形,那么点D的坐标为______;请直接写出
求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,顺德区政府招商办准备引荐本区的龙头企业与 “一带一路”沿线国家和地区合作.负责人要为这些企业制作一批宣传材料,联系了甲、乙两家设计公司,甲公司提出:每份材料收费20元,另加设计费3000元;乙公司提出:每份材料收费30元,不收设计费.在其他条件完全相同的情况下,区招商负责人选择哪间公司比较合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com