精英家教网 > 初中数学 > 题目详情
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是轴正半轴上一动点(OD>1),连结BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图2中,过点M作MG⊥轴于点G,连结DN,若四边形DMGN为损矩形,求D点坐标.
(1)四边形ABMD为损矩形;(2)见解析;(3)(0,-1);(4)(3,0)

试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;
(2)证明四边形BADM四个顶点到BD的中点距离相等即可;
(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,即可求得点N的坐标;
(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.
(1)四边形ABMD为损矩形;
(2)取BD中点H,连结MH,AH
∵四边形OABC,BDEF是正方形
∴△ABD,△BDM都是直角三角形
∴HA=BD   HM=BD
∴HA=HB=HM=HD=BD
∴损矩形ABMD一定有外接圆
(3)∵损矩形ABMD一定有外接圆⊙H
MAD =MBD    
∵四边形BDEF是正方形
MBD=45°
MAD=45°
OAN=45°
∵OA=1 
∴ON=1   
∴N点的坐标为(0,-1)
(4) 延长AB交MG于点P,过点M作MQ⊥轴于点Q
设MG=,则四边形APMQ为正方形
∴PM=AQ=-1 ∴OG=MQ=-1
∵△MBP≌△MDQ
∴DQ=BP=CG=-2
∴MN2
ND2
MD2
∵四边形DMGN为损矩形

 
=2.5或=1(舍去)     
∴OD=3  
∴D点坐标为(3,0).
点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知⊙与⊙相交于两点,点在⊙上,为⊙上一点(不与重合),直线与⊙交于另一点

(1)如图(1),若是⊙的直径,求证:;(4分)
(2)如图(2),若是⊙外一点,求证:;(4分)
(3)如图(3),若是⊙内一点,判断(2)中的结论是否成立。(3分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
请完成下列填空:
①请在图中确定并点出该圆弧所在圆心D点的位置,圆心D 坐标        
②⊙D的半径=            (结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,求圆锥的侧面积

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB、DE分别切⊙O于A、B、C,如果ΔPDE的周长为8,那么PA=_______

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

扇形的弧长为20πcm,面积为240πcm2,则扇形的半径为         cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为( )
A.20°B.40°C.50°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆心在原点O,半径为5的⊙O,点P(-3,4)与⊙O的位置关系是(  )。
A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(      )

A.        B.      C.    B.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径为2,点A的坐标为(2, ),直线AB为⊙O的切线,B为切点。则B点的坐标为
A.(B.(
C.(D.(

查看答案和解析>>

同步练习册答案