精英家教网 > 初中数学 > 题目详情
圆心在原点O,半径为5的⊙O,点P(-3,4)与⊙O的位置关系是(  )。
A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定
B

试题分析:先由勾股定理求得点P到圆心O的距离,再根据点P与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.
∵点P的坐标为(-3,4),
由勾股定理得,点P到圆心O的距离
∴点P在⊙O上,
故选B.
点评:解答本题的关键是掌握根据点与圆心的距离d与半径r的大小关系,来判断出点与圆的位置关系:当时,点在圆外;当时,点在圆上;当时,点在圆内.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是轴正半轴上一动点(OD>1),连结BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图2中,过点M作MG⊥轴于点G,连结DN,若四边形DMGN为损矩形,求D点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标中,直线为常数且≠0),分别交轴,轴于点、⊙的半径为个单位长度,如图,若点轴正半轴上,点轴的正半轴上,且

(1)求的值。
(2)若=4,点P为直线上的一个动点过点作⊙的切线 切点分别为。当时,求点的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.

(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2)C(6,0),解答下列问题:

(1)请在图中确定该圆弧所在圆心D点的位置,则D点坐标为________ ;
(2)连结AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积. (结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。若AC=8cm,DE=2cm,则OD的长为      cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:

(1) 请在图中确定该圆弧所在圆心D点的位置,D点坐标为________;
(2) 连接AD、CD,求⊙D的半径(结果保留根号)及扇形ADC的圆心角度数;
(3) 若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径 (结果保留根号).                       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.

(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=,求PC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆的半径为3,一点刭圆心的距离是5,则这点在
A.圆内B.圆上C.圆外D.都有可能

查看答案和解析>>

同步练习册答案