【题目】如果关于的一元二次方程有两个实数根,且其中一根为另一根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,不正确的是( )
A.方程是倍根方程;
B.若是倍根方程,则;
C.若方程是倍根方程,且相异两点都在抛物线上,则方程的一个根为;
D.若点在反比例函数的图象上,则关于的方程是倍根方程.
【答案】C
【解析】
A、根据倍根方程定义即可得到方程x2+3x+2=0是倍根方程;
B、根据(x-2)(mx+n)=0是倍根方程,且x1=2,x2=得到=-1或=-4,从而得到m+n=0,或4m+n=0,进而得到4m2+5mn+n2=(4m+n)(m+n)=0正确;
C、由方程ax2+bx+c=0是倍根方程,得到x1=2x2,有已知条件得到得到抛物线的对称轴x=,可得x1和x2的值,可作判断.
D、根据已知条件得到pq=2,解方程px2+3x+q=0得到方程的根;
x2+3x+2=0,
(x+1)(x+2)=0,
x1=-1,x2=-2,
∴方程x2+3x+2=0是倍根方程;
故A正确;
解方程(x-2)(mx+n)=0,
得:x1=2,x2=,
∵(x-2)(mx+n)=0是倍根方程,
∴=-1或=-4,
∴m+n=0或4m+n=0,
∵4m2+5mn+n2=(4m+n)(m+n)=0,
故B正确;
∵方程ax2+bx+c=0是倍根方程,
∴设x1=2x2,
∵相异两点M(1+t,s),N(4-t,s)都在抛物线y=ax2+bx+c上,
∴抛物线的对称轴x= ,
∴x1+x2=5,
∴x2+2x2=5,
∴x1=, x2=
故C不正确;
∵点(p,q)在反比例函数的图象上,
∴pq=2,
解方程px2+3x+q=0得:
x1=,x2=,
∴x2=2x1,故D正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点,与轴相交于点,连接,且的面积为2.
(1)求反比例函数的表达式;
(2)将直线向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线向下平移了几个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中E为AD的中点,连接EC.
(1)作AEF∽DCE,点F在边AB上(要求:尺规作图,不写作法,保留作图痕迹):
(2)在(1)的条件下,连接CF,求证:AEF∽ECF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校开展的“献爱心”活动中,小东同学打算在暑假期间帮助一家社会福利书店推销A、B、C、D四种书刊.为了了解四种书刊的销售情况,小东对五月份这四种书刊的销售量进行了统计,小东通过采集数据,绘制了两幅不完整的统计图表(如图),请你根据所给出的信息解答以下问题:
书刊种类 | 频数 | 频率 |
A |
| 0.25 |
B | 1000 | 0.20 |
C | 750 | 0.15 |
D | 2000 |
|
(1)填充频率分布表中的空格及补全频数分布直方图;
(2)若该书店计划定购此四种书刊6000册,请你计算B种书刊应采购多少册较合适?
(3)针对调查结果,请你帮助小东同学给该书店提一条合理化的建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是某市2009年4月5日至14日每天最低气温的折线统计图.
(1)图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是____,中位数是____,方差是_____.
(3)请用扇形图表示出这十天里温度的分布情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,为线段上的动点(不含端点),将沿着翻折得到,
(1)如图1,当,求长;
(2)如图2,为线段上的点,当时,求点由到的运动过程中,线段扫过的图形与重叠部分的面积;
(3)如图3,在上,连接,将沿着翻折得到,连结,问是否存在点,使得与相似?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.
(1)求该公司购买的、型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD的顶点A(0,﹣1),∠DAC=60°.若点P从点A出发,沿A→B→C→D→A…的方向,在菱形的边上以每秒0.5个单位长度的速度移动,则第2020秒时,点P的坐标为( )
A.(2,0)B.(,0)C.(﹣,0)D.(0,1 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:是的内接三角形,点为的中点,弦分别交,于点,,且.
(1)如图1,求证:;
(2)如图2,过点作,交的延长线于点,与的另一个交点为点,连接交于点,若,求证:;
(3)如图3,在(2)的条件下,连接,若,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com