精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是________.

2+
分析:由题意可得当⊙C与AD相切时,△ABE面积最大,然后连接CD,由切线的性质,根据勾股定理,可求得AD的长,易证得△AOE∽△ADC,根据相似三角形的对应边成比例,易求得OE的长,继而求得△ABE面积的最大值.
解答:解:当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,


∴OE=
∴BE=OB+OE=2+
∴S△ABE=BE•OA=×(2+)×2=2+
故答案为:2+
点评:此题考查了切线的性质、相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案