【题目】下列各式,属于二元一次方程的个数有( )
①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△ABC中,BD,CD分别平分∠ABC,∠ACB,过点D作EF∥BC交AB,AC于点E,F,试说明BE+CF=EF的理由;
(2)如图2,BD,CD分别平分∠ABC,∠ACG,过点D作EF∥BC交AB,AC于点E,F,则BE,CF,EF有怎样的数量关系?并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题.
已知:如图.
求证:
老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?
(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是_________.
(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线然后在平行线间画了一点,连接后,用鼠标拖动点分别得到了图①②③,小颖发现图②正是上面题目的原型,于是她由上题的结论猜想到图①和③中的与之间也可能存在着某种数量关系于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.
请你在小颖操作探究的基础上,继续完成下面的问题:
①猜想图①中与之间的数量关系并加以证明:
②补全图③,直接写出与之间的数量关系:_______.
(3)学以致用:一个小区大门栏杆的平面示意图如图所示,垂直地面于平行于地面
,若,则_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD·CE;⑤BC2+DE2=BE2+CD2.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为( )
A.2
B.2
C.4 ﹣2
D.2 ﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x、y的方程组 ,给出下列说法:
①当a=1时,方程组的解也是方程x+y=2的一个解;
②当x﹣2y>8时,a> ;
③不论a取什么实数,2x+y的值始终不变;
④若y=x2+5,则a=﹣4. 以上说法正确的是( )
A.②③④
B.①②④
C.③④
D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B在线段AC的延长线上,AC<CB,点M、N分别是AC、BC的中点,点D是AB的中点.
(1)若AC=8cm,CB=10cm,求线段MN的长;
(2)若AC=a,CB=b,求线段CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com