【题目】探究题.
已知:如图.
求证:
老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?
(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是_________.
(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线然后在平行线间画了一点,连接后,用鼠标拖动点分别得到了图①②③,小颖发现图②正是上面题目的原型,于是她由上题的结论猜想到图①和③中的与之间也可能存在着某种数量关系于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.
请你在小颖操作探究的基础上,继续完成下面的问题:
①猜想图①中与之间的数量关系并加以证明:
②补全图③,直接写出与之间的数量关系:_______.
(3)学以致用:一个小区大门栏杆的平面示意图如图所示,垂直地面于平行于地面
,若,则_______.
【答案】(1)两直线平行同旁内角互补;(2)①∠BDF=∠B+∠F.理由见解析;②∠F=∠D+∠F;(3)120°.
【解析】
(1)利用平行线的性质证明即可.
(2)①结论:∠BDF=∠B+∠F.如图①中,作DK∥AB.利用平行线的性质证明即可.
②如图③中,结论:∠F=∠D+∠B.(答案不唯一).利用平行线的性质以及三角形的外角的性质证明即可.
(3)利用图1中的结论,计算即可.
(1)证明:如图1中,
∵AB∥EF,CD∥EF,
∴CD∥EF,
∴∠B+∠CDB=180°,∠F+∠CDF=180°(两直线平行同旁内角互补),
∴∠B+∠CDB+∠CDF+∠F=360°,
∴∠B+∠BDF+∠F=360°,
故答案为:两直线平行同旁内角互补.
(2)解:①结论:∠BDF=∠B+∠F.
理由:如图①中,作DK∥AB.
∵AB∥DK,AB∥EF,
∴DK∥EF,
∴∠B=∠BDK,∠F=∠FDK,
∴∠BDF=∠BDK+∠FDK=∠B+∠F.
②如图③中,结论:∠F=∠D+∠B.(答案不唯一).
理由:∵AB∥EF,
∴∠1=∠F,
∵∠1=∠B+∠D,
∴∠F=∠D+∠B.
故答案为∠F=∠D+∠F.
(3)解:如图2中,
∵BA⊥AE,
∴∠BAE=90°,
∵∠ABC+∠BAE+∠BCD=360°,∠BCD=150°,
∴∠ABC=360°-240°=120°,
故答案为120°.
科目:初中数学 来源: 题型:
【题目】平行四边形可以看成是线段平移得到的图形,如图1,将线段AD沿AB的方向平移AB个单位至BC处,就可以得到平行四边形ABCD,或者将线段AB沿AD的方向平移AD个单位至DC处,也可以得到平行四边形ABCD.
(1)在图2,图3,图4中,给出平行四边形ABCD的顶点A,B,D的坐标,写出图2,图3,图4中的顶点C的坐标,它们分别是_____,_______,_______;
(2)通过对图2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图5)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为_______(不必证明);
(3)如图6,在平面直角坐标系中,已知A(﹣3,0),B(3,0),C(2,4),则以A,B,C三个点为顶点的平行四边形的第四个顶点D的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算正确的个数是( )
①2a2﹣a2=a2;
② + =2 ;
③(π﹣3.14)0× =0;
④a2÷a× =a2;
⑤sin30°+cos60°= ;
⑥精确到万位6295382≈6.30×106 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.
(1)求证;DE=DF;
(2)若∠A=90°,图中与DE相等的还有哪些线段?(不用说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.
(1)求证:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式,属于二元一次方程的个数有( )
①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果两个角的差的绝对值等于90°,就称这两个角互为垂角,其中一个角叫另一个角的垂角.
(1)如图1,O为直线AB上一点,∠AOC=90°,∠EOD=90°,直接写出图中∠BOE的垂角为 ;
(2)如果一个角的垂角等于这个角的补角的,求这个角的度数;
(3)如图2,O为直线AB上一点,∠AOC=75°,将整个图形绕点O逆时针旋转n°(0<n<180),直线AB旋转到A1B1,OC旋转到OC1,作射线OP,使∠BOP=∠BOB′,试直接写出当n= 时,∠POA1与∠AOC1互为垂角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com