精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD(点A在第一象限)与x轴的正半轴相交于M,与y的负半轴相交于N,AB∥x轴,反比例函数的图象y=
k
x
过A、C两点,直线AC与x轴相交于点E、与y轴相交于点F.
(1)若B(-6,3),且矩形ABCD的周长为24.
①求k的值;
②求证:FN=AM;
(2)如图2,连接MN,试判断MN与AC是否平行?若是,请加以证明;若不是,请说明理由.
考点:反比例函数综合题
专题:综合题
分析:(1)①根据A与B纵坐标相同,B与C横坐标相同,且A与C在反比例函数图象上,根据B坐标表示出A与C坐标,由矩形ABCD周长为24列出关于k的方程,求出方程的解即可得到k的值;
②由k的值,得到AD=BC=4,求出A,D,C坐标,确定出AM长,由FN与AD平行,利用两直线平行得到两对同位角相等,进而确定出三角形FCN与三角形ACD相似,由相似得比例,求出FN的长,即可得证;
(2)连接MN,求出DM:AD与DN:CD,得到两比值相等,即可得证.
解答:解:(1)①由点B(-6,3),设点A(
k
3
,3),C(-6,-
k
6
),
∵矩形ABCD周长为24,
k
3
+6+
k
6
+3=
24
2
=12,
整理得:2k+k=18,
解得:k=6;
②∵k=6,
∴AD=BC=4,AB=CD=8,A(2,3),D(2,-1),C(-6,-1),
∴AM=3,
∵FN∥AD,
∴∠CFN=∠CAD,∠FNC=∠ADC=90°,
∴△FCN∽△ACD,
FN
AD
=
CN
CD

∴FN=
AD•CN
CD
=
4×6
8
=3,
∴AM=FN;
(2)MN∥AC,理由为:
连接MN,
DM
AD
=
1
4
ND
CD
=
2
8
=
1
4

DM
AD
=
DN
CD

则MN∥AD.
点评:此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,矩形的性质,坐标与图形性质,以及平行线的性质,熟练掌握反比例函数的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:
(1)(
6
-
5
)(
6
+
5
);
(2)(3
12
-2
1
3
+
48
)÷2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知平面直角坐标系内,A(0,3),B(-4,0),C为x轴上正半轴上一点,若P为OB延长线上一点,PM⊥CA于M,且∠CPM=
1
2
∠BAC.
(1)求C点坐标;
(2)如图2,若OA2+OB2=AB2,过动点P向AB延长线作PN⊥AB于N,求证:PM-PN为定值;
(3)如图3,以BC为边作等边△BCD,Q为BD边的中点.连PQ,且∠PQE=120°.QE交DC延长线于E,问:在点P运动的过程中,CP-CE是否发生变化?若不变,求其值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程x2-kx+k-1=0,求证:不论k为何实数时,此方程总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,添上
 
条件(只写一个即可),△ABC∽△ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:64-
1
3
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如果由四舍五入得到的近似数是35,那么34.49,34.51,34.99,35.01这四个数中不可能是真值的为
 

查看答案和解析>>

同步练习册答案