14£®Èçͼ£¬Å×ÎïÏßy=-$\frac{1}{2}{x}^{2}+bx+c$¾­¹ýA£¨4£¬0£©£¬C£¨0£¬4£©Á½µã£¬µãBÊÇÅ×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µã£¬µãEÊÇOCµÄÖе㣬×÷Ö±ÏßAC¡¢µãMÔÚÅ×ÎïÏßÉÏ£¬¹ýµãM×÷MD¡ÍxÖᣬ´¹×ãΪµãD£¬½»Ö±ÏßACÓÚµãN£¬ÉèµãMµÄºá×ø±êΪm£¬MNµÄ³¤¶ÈΪd£®
£¨1£©Ö±½Óд³öÖ±ÏßACµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÇóÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½£»
£¨3£©Çód¹ØÓÚmµÄº¯Êý¹ØÏµÊ½£»
£¨4£©µ±ÒÔµãM¡¢N¡¢E¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎʱ£¬Ö±½Óд³ömµÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃÖ±ÏߵĽâÎöʽ£»
£¨2£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©¸ù¾ÝƽÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊÇ´óµÄ×Ý×ø±ê¼õСµÄ×Ý×ø±ê£¬¿ÉµÃ´ð°¸£»
£¨4£©¸ù¾ÝÒ»×é¶Ô±ßƽÐÐÇÒÏàµÈµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬¿ÉµÃMNµÄ³¤£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬½«A¡¢CµãµÄ×ø±ê´úÈ룬µÃ
$\left\{\begin{array}{l}{4k+b=0}\\{b=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=4}\end{array}\right.$£¬
Ö±ÏßACµÄ½âÎöʽΪy=-x+4£»
£¨2£©½«A¡¢Cµã×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ£¬µÃ
$\left\{\begin{array}{l}{-\frac{1}{2}¡Á{4}^{2}+4b+c=0}\\{c=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=1}\\{c=4}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{2}$x2+x+4£»
£¨3£©¡ßµãMµÄºá×ø±êΪm£¬
¡àMµãµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$m2+m+4£©£®µãNµÄ×ø±êΪ£¨m£¬-m+4£©£®
¢Ùµ±µãMÔÚµãNµÄÉÏ·½Ê±£¬MN=-$\frac{1}{2}$2+m+4-£¨-m+4£©=-$\frac{1}{2}$m2+2m£¬
d=-$\frac{1}{2}$m2+2m£»
¢Úµ±µãMÔÚµãNµÄÏ·½Ê±£¬MN=-m+4-£¨-$\frac{1}{2}$m2+m+4£©=$\frac{1}{2}$m2-2m£¬
d=$\frac{1}{2}$m2-2m£»
£¨4£©mµÄֵΪm1=2£¬m2=2-2$\sqrt{2}$£¬m3=2+2$\sqrt{2}$£®ÀíÓÉÈçÏ£º
¢ÙµãMÔÚµãNµÄÉÏ·½Ê±£¬MN¨TOE=2£¬¼´-$\frac{1}{2}$m2+2m=2£¬
½âµÃm1=m2=2£®
¡àm=2£»
¢Úµ±µãMÔÚµãNµÄÏ·½Ê±£¬MN=OE=2£¬¼´$\frac{1}{2}$m2-2m=2£¬
½âµÃm1=2-2$\sqrt{2}$£¬m2=2+2$\sqrt{2}$£¬
¡àm=2-2$\sqrt{2}$£¬m=2+2$\sqrt{2}$£®
×ÛÉÏËùÊö£ºµ±ÒÔµãM¡¢N¡¢E¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎʱ£¬mµÄֵΪm1=2£¬m2=2-2$\sqrt{2}$£¬m3=2+2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»ÀûÓÃÆ½ÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊÇ´óµÄ×Ý×ø±ê¼õСµÄ×Ý×ø±êÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£»ÀûÓÃÒ»×é¶Ô±ßƽÐÐÇÒÏàµÈµÄËıßÐÎÊÇÆ½ÐÐËıßÐεóöMNµÄ³¤ÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªÖ±Ïßl1£ºy=-3x+3ÓëxÖá½»ÓÚµãD£¬Ö±Ïßl2¾­¹ýµãA£¨4£¬0£©¡¢B£¨3£¬-$\frac{3}{2}$£©£¬ÇÒÓël1½»ÓÚµãC£®
£¨1£©µãDµÄ×ø±êÊÇ£¨1£¬0£©£®
£¨2£©ÇóÖ±Ïßl2µÄ½âÎöʽ£®
£¨3£©Çó¡÷ADCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼͼÐζ¼ÊÇÓÉͬÑù´óСµÄÆå×Ó°´Ò»¶¨µÄ¹æÂÉ×é³É£¬ÆäÖеڢٸöͼÐÎÓÐ1¿ÅÆå×Ó£¬µÚ¢Ú¸öͼÐÎÒ»¹²ÓÐ6¿ÅÆå×Ó£¬µÚ¢Û¸öͼÐÎÒ»¹²ÓÐ16¿ÅÆå×Ó£¬¡­£¬ÔòµÚ¢à¸öͼÐÎÖÐÆå×ӵĿÅÊýΪ£¨¡¡¡¡£©
A£®141B£®106C£®169D£®150

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª|a|=7£¬b=3£¬Ôòa+b=-4»ò10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÎªÔö¼Ó¹«ÃñµÄ½ÚÔ¼ÓõçÒâʶ£¬Ä³ÊвÉÓ÷ֶμƷѵķ½·¨°´Ô¼ÆËãÿ»§¼ÒÍ¥µÄµç·Ñ£®Ã¿»§¼ÒͥÿÔµç·Ñy£¨Ôª£©ÓëÓõçÁ¿x£¨¶È£©Ö®¼äµÄº¯ÊýͼÏóÈçͼËùʾ£®
£¨1£©Èô¼×Óû§Ä³ÔÂÓõçÁ¿Îª150¶È£¬Ôò¸ÃÔÂÓ¦½Éµç·Ñ75Ôª£®
£¨2£©ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÈôÒÒÓû§Ä³ÔÂÐè½Éµç·Ñ132Ôª£¬ÇóÒÒÓû§¸ÃÔµÄÓõçÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼ÆË㣺-22¡Á£¨-1£©2015=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èô|a|=5£¬|b|=2£®
£¨1£©Èôa£¾b£¬Çóa+bµÄÖµ£»
£¨2£©Èô|a+b|=|a|-|b|£¬Çóa¡¢bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ò»¸öÊýµÄÏà·´ÊýÊÇÕýÊý£¬ÔòÕâ¸öÊýÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®ÕýÊýB£®¸ºÊýC£®0D£®ÕýÊýºÍ0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ò»¼¸ºÎÌåÊÇÓÉÈô¸É¸öÏàͬµÄСÁ¢·½¿é´î³ÉµÄ£¬ËüµÄÖ÷ÊÓͼºÍ×óÊÓͼÏàͬ£¬ÇÒÈçͼËùʾ£¬Ôò´î¸Ã¼¸ºÎÌåµÄСÁ¢·½¿é×î¶à¼¸¿é£¿×îÉÙ¼¸¿é£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸