【题目】如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=( )
A.2B.C.D.
【答案】D
【解析】
连接CF、FG,先证明△AFD∽△EAD,得出,结合DF=5EF,可计算出AD,AF的长,再证明△AFG∽△DFC,从而得出,求出AG,即可由DG=AD-AG解题.
解:连接CF、FG,
∵正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,
∴∠AFD=∠EAD=90°,又∠ADF=∠EDA,
∴△AFD∽△EAD,
∴,
又∵DF=5EF=5,∴EF=1,ED=6,
∴AD=,
在Rt△AFD中,AF==,
∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,
∴∠DAF=∠CDF,
∵四边形GFCD是⊙O的内接四边形,
∴∠FCD+∠DGF=180°,
∵∠FGA+∠DGF=180°,
∴∠FGA=∠FCD,
∴△AFG∽△DFC.
∴,
∴,
∴AG=,
∴DG=AD﹣AG=,
故选:D.
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+2ax-3与x轴交于A、B(1,0)两点(点A在点B的左侧),与y轴交于点C,将抛物线沿y轴平移m(m>0)个单位,当平移后的抛物线与线段OA有且只有一个交点时,则m的取值范围是_______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,AB=BC=AC=6cm,点P从点B出发,沿B→C方向以1.5cm/s的速度运动到点C停止,同时点Q从点A出发,沿A→B方向以1cm/s的速度运动,当点P停止运动时,点Q也随之停止运动,连接PQ,过点P作BC的垂线,过点Q作BC的平行线,两直线相交于点M.设点P的运动时间为x(s),△MPQ与△ABC重叠部分的面积为y(cm2)(规定:线段是面积为0的图形).
(1)当x= (s)时,PQ⊥BC;
(2)当点M落在AC边上时,x= (s);
(3)求y关于x的函数解析式,并写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,已知该幼儿园用了3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.
(1)该幼儿园购买的A,B型玩具的单价各是多少元?
(2)若A,B两种型号的玩具共购买200件,且A型玩具数量不多于B型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一居民楼前方处有一建筑物,小敏在居民楼的顶部处和底部处分别测得建筑物顶部的仰角为和,求居民楼的高度和建筑物的高度(结果取整数).
(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 的顶点分别为 A(-2,2)、B(-4,5)、C(-5,1)和直线 m (直线 m 上各点的横坐标都为 1).
(1)作出△ABC 关于 轴对称的图形△A1B1C1,并写出点 A1 的坐标;
(2)作出点 C关于直线 m 对称的点C2 , 并写出点C2 的坐标;
(3)在轴上找一点P,使 PA+PC的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),矩形的一边在直角坐标系中轴上,折叠边,使点落在轴上点处,折痕为,已知,,并设点坐标为,其中.
(1)求点、的坐标(用含的式子表示);
(2)连接,若是等腰三角形,求的值;
(3)如图(2),设抛物线经过A、E两点,其顶点为,连接AM,若,求、、的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com