【题目】如图(1),矩形的一边在直角坐标系中轴上,折叠边,使点落在轴上点处,折痕为,已知,,并设点坐标为,其中.
(1)求点、的坐标(用含的式子表示);
(2)连接,若是等腰三角形,求的值;
(3)如图(2),设抛物线经过A、E两点,其顶点为,连接AM,若,求、、的值.
【答案】(1)点、的坐标是;(2)m的值是6,4,;(3)a、h、m的值是,-1,12.
【解析】
(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=10,EF=DE,进而求出BF的长,即可得出E,F点的坐标;
(2)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可;
(3)由E(m+10,3),A(m,8),代入二次函数解析式得出M点的坐标,再利用△AOB∽△AMG,求出m的值即可.
解:(1)∵四边形ABCD是矩形,
∴AD=CB=10,AB=DC=8,∠D=∠DCB=∠ABC=90°,
由折叠对称性:AF=AD=10,EF=DE,
在Rt△ABF中,BF==6,
∴CF=4,
设EF=x,则EC=8-x,
在Rt△ECF中,42+(8-x)2=x2,
解得:x=5,
∴CE=3,
∵B(m,0),
∴E(m+10,3),F(m+6,0);
(2)分三种情况讨论:
若AO=AF,
∵AB⊥OF,
∴BO=BF=6,
∴m=6,
若OF=FA,则m+6=10,
解得:m=4,
若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64,
∴(m+6)2=m2+64,
解得:m=,
∴m=6或4或;
(3)由(1)知:E(m+10,3),A(m,8).
∴ ,
得,
∴M(m+6,-1),
设对称轴交AD于G,
∴G(m+6,8),
∴AG=6,GM=8-(-1)=9,
∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°,
∴∠OAB=∠MAG,
∵∠ABO=∠MGA=90°,
∴△AOB∽△AMG,
∴ ,
即: ,
∴m=12.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=( )
A.2B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,坐标原点O是菱形ABOC的一个顶点,边OB落在x轴的负半轴上,且cos∠BOC=,顶点C的坐标为(a,4),反比例函数的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,点分别是边的中点,连接.将绕点顺时针方向旋转,记旋转角为.
① ②
③ ④
(1)问题发现:当时, .
(2)拓展探究:试判断:当时,的大小有无变化?请仅就图②的情况给出证明.
(3)问题解决:当旋转至三点共线时,如图③,图④,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过点,直线与轴交于点为二次函数图象上任一点.
求这个二次函数的解析式;
若点是直线上方抛物线上一点,过分别作和轴的垂线,交直线于不同的两点在的左侧),求周长的最大值;
是否存在点,使得是以为直角边的直角三角形?如果存在,求点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com