【题目】已知:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径运动到B点,点Q从B点出发沿B→C→A路径运动到A点.点P和点Q分别以2cm/秒和3cm/秒的速度同时出发,当其中一个点到达终点时,另一个点也随之停止运动.在某时刻,分别过P和Q作PE⊥l于点E,QF⊥l于点F.设运动时间为t(秒).
(1)当PC=2QC时,求t的值.
(2)当△PEC与△QFC全等时,求t的值.
【答案】(1)或,PC=2CQ;(2)2或.
【解析】
(1)分类讨论:①当点P在AC上,点Q在BC上时,②当点Q在AC上,点P在BC上时,③当P、Q都在AC上时,根据题意列出方程即可得出结论;
(2)根据题意化成三种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,求出即可.
(1)①当点P在AC上,点Q在BC上时,
∵AC=6,AP=2t,BC=8,BQ=3t,
∴CP=6-2t,CQ=8-3t,
∵PC=2QC,
∴6-2t=2(8-3t),
解得:t=
②当点Q在AC上,点P在BC上时,不存在PC=2QC
③当P、Q都在AC上时,
∵PC=2QC,
∴6-2t=2(3t-8),
解得:t=
综上所述: t=或;
(2)①如图1,P在AC上,Q在BC上,
∵PE⊥l,QF⊥l,
∴∠PEC=∠QFC=90°,
∵∠ACB=90°,
∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,
∴∠EPC=∠QCF,
则△PCE≌△CQF(AAS),
∴PC=CQ,即6-2t=8-3t,t=2;
②如图,P在BC上,Q在AC上,
∵由①知:PC=CQ,
∴2t-6=3t-8,t=2;
2t-6<0,不符合题意;
③当P、Q都在AC上时,如图
CP=6-2t=3t-8,t=;
④当Q到A点停止,P在BC上时,AC=PC,2t-6=6时,解得t=6>(不符合题意)
综上所述:t的值为2s或s.
科目:初中数学 来源: 题型:
【题目】如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.
(1)求k,并用t表示h;
(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)请说出这个几何体模型的最确切的名称是__ __;
(2)如图②是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和三角形),请在网格中画出该几何体的左视图;
(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,边长为1的正方形网格中,的三个顶点、、都在格点上.
(1)作关于关于轴的对称图形,(其中、、的对称点分别是、、),并写出点坐标;
(2)为轴上一点,请在图中画出使的周长最小时的点(不写画法,保留画图痕迹),并直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的两条对角线分别长6和8,点P是对角统AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是( )
A. 10 B. 8 C. 5 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边△ABC 的边长为 4,AD 是 BC 边上的中线,F 是边 AD 上的动点,E 是边 AC 上的点, 当 AE=2,且 EF+CF 取得最小值时.
(Ⅰ)能否求出∠ECF 的度数?_____(用“能”或“否”填空);
(Ⅱ)如果能,请你在图中作出点 F(保留作图痕迹,不写证明).并直接写出∠ECF 的度 数;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com