精英家教网 > 初中数学 > 题目详情
17.如图,点P在⊙O外,PA、PB是⊙O的切线,A、B是切点,BC是直径,若∠APB=70°,则∠ACB的度数为55°.

分析 连接OA,根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=110°,根据三角形外角性质和等腰三角形性质求出即可.

解答 解:
连接OA,
∵PA、PB是⊙O的切线,A、B是切点,
∴∠PAO=∠PBO=90°,
∵∠APB=70°,
∴∠AOB=360°-90°-90°-70°=110°,
∴∠ACB+∠OAC=∠AOB=110°,
∵OC=OA,
∴∠ACB=∠OAC,
∴∠ACB=55°
故答案为:55°.

点评 本题考查了切线的性质,三角形外角性质,等腰三角形性质的应用,能根据切线的性质求出∠PAO=∠PBO=90°是解此题的关键,注意:圆的切线垂直于过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE;
(2)如图2,当点D在线段BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.请画出图形.上述结论是否仍然成立,并说明理由;
(3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式(组),并把解集表示在数轴上.
(1)$\frac{2x-1}{3}$≤$\frac{3x+2}{4}$-1
(2)$\left\{\begin{array}{l}{4x>2x-6}\\{\frac{x-1}{3}≤\frac{x+1}{9}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为$\frac{5}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知AB∥CD,∠B=∠GED,∠F=∠G,试判断BF与GE有怎样的位置关系?HG与FT呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图(1),已知抛物线y=ax2+bx+5与x轴交于A、B(点A在点B的左侧)两点,与y轴交于点C,已知点A的横坐标为-5,且点D(-2,-3)在此抛物线的对称轴上.
(1)求a、b的值;
(2)若在直线AC上方的抛物线上存在点M,使点M到x轴的距离与M到直线AC的距离之比为$\frac{4\sqrt{2}}{3}$,试求出点M的坐标;
(3)如图(2),过点B做BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿边GH翻折得△D′GH,当KG为何值时,△D′GH与△KGH重叠部分的面积是△DGK面积的$\frac{1}{4}$,请直接写出你的答案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列各式中,能用平方差公式计算的是(  )
A.(2a+b)(a-b)B.(-a-b)(-a+b)C.(a+b)(-a-b)D.(-a+b)(a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在△ABC中,∠B=50°,∠C=25°,∠A=105°.

查看答案和解析>>

同步练习册答案