【题目】由于“新冠肺炎”的发生,市场上防护口罩出现热销.某药店第一次用2000元购进若干个防护口罩,并按定价2.5元/个出售,很快售完由于该防护口罩畅销,第二次购进时,每个防护口罩的进价比第一次的进价提高了25%,该药店用3000元购进防护口罩的数量比第一次多了200个,并把定价提高20%进行销售.
(1)第一次购进时,每个防护口罩的价格是多少元?
(2)第二次售出800个防护口罩时,出现了滞销,该药店打算降价售完剩余的防护口罩.那么该药店每个防护口罩至多降价多少元出售,才能使第二次销售的防护口罩不亏本?
【答案】(1)第一次购进时,每个防护口罩的价格是2元;(2)该药店每个防护口罩至多降价1.5元销售,才能使第二次销售的防护口罩不亏本.
【解析】
(1)设第一次购进时,每个防护口罩的价格是x元,则第二次购进时,每个防护口罩的价格是(1+25%)x元,根据数量=总价÷单价结合第二次比第一次多购进200个,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据两次进货单价间的关系可求出第二次购进防护口罩的单价,结合数量=总价÷单价及定价比原价高20%,可求出第二次购进防护口罩的数量及销售单价,设该药店每个防护口罩降价y元销售,根据销售总价=销售单价×数量结合第二次销售的防护口罩不亏本,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.
解:(1)设第一次购进时,每个防护口罩的价格是x元,则第二次购进时,每个防护口罩的价格是(1+25%)x元,
依题意,得:﹣=200,
解得:x=2,
经检验,x=2是原分式方程的解,且符合题意.
答:第一次购进时,每个防护口罩的价格是2元.
(2)第二次购进防护口罩的单价为(1+25%)×2=2.5(元),
第二次购进防护口罩的数量为3000÷2.5=1200(个),
第二次购进防护口罩的销售单价为2.5×(1+20%)=3(元).
设该药店每个防护口罩降价y元销售,
依题意,得:800×3+(1200﹣800)(3﹣y)≥3000,
解得:y≤1.5.
答:该药店每个防护口罩至多降价1.5元销售,才能使第二次销售的防护口罩不亏本.
科目:初中数学 来源: 题型:
【题目】观察下列等式:
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=_____(结果用含m的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.
(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.
(2)连接BF,DF,设OB与EF交于点P,
①求证:PE=PF.
②若DF=EF,求∠BAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,∠ABD=60°,点E从点A出发,以每秒2个单位长度的速度沿边AB运动,到点B停止运动.过点E作EF∥BD交AD于点F,将△AEF绕点E顺时针旋转得到△GEH,且点G落在线段EF上,设点E的运动时间为t(秒)(0<t<3).
(1)若t=1,求△GEH的面积;
(2)若点G在∠ABD的平分线上,求BE的长;
(3)设△GEH与△ABD重叠部分的面积为T,用含t的式子表示T,并直接写出当0<t<3时T的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆游泳的次数为次(为正整数).
(1)根据题意,填写下表:
游泳次数 | 5 | 10 | 15 | … | |
方式一的总费用(元) | 350 | 650 | … | ||
方式二的总费用(元) | 200 | 400 | … |
(2)若小亮计划今年游泳的总费用为2000元,选择哪种付费方式,他游泳的次数比较多;
(3)当时,小亮选择哪种付费方式更合算.并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点,交轴于点.
(1)求抛物线的函数表达式;
(2)点为轴右侧抛物线上一点,是否存在点使?若存在,求出点的坐标,若不存在,请说明理由.
(3)将直线绕点顺时针旋转,与直线相交于点,求直线的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com