精英家教网 > 初中数学 > 题目详情

【题目】如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.

【答案】解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,
∴AO= =5cm.
则在直角△AFO中,由勾股定理得到:FO= =13cm,
∴图中半圆的面积= π×( 2= π× = (cm2).
答:图中半圆的面积是 cm2
【解析】首先,在直角△ABO中,利用勾股定理求得AO=5cm;然后在直角△AFO中,由勾股定理求得斜边FO的长度;最后根据圆形的面积公式进行解答.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探究题: =3, =0.5, =6, = =0.
根据以上算式,回答:
(1) 一定等于a吗?如果不是,那么 =
(2)利用你总结的规律,计算: ①若x<2,则 =
=
(3)若a,b,c为三角形的三边长,化简: + +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(  )
A.两点确定一条直线
B.两点之间线段最短
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司全体职工的月工资如下:

月工资(元)

18000

12000

8000

6000

4000

2500

2000

1500

1200

人数

1(总经理)

2(副总经理)

3

4

10

20

22

12

6

该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是(

A. 中位数和众数B. 平均数和众数

C. 平均数和中位数D. 平均数和极差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知同一平面内存在⊙O和点P,点P与⊙O上的点的最大距离为8,最小距离为2,则⊙O的半径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:

(1)本次共抽查了多少名学生?

(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.

(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.

查看答案和解析>>

同步练习册答案