【题目】某校八年级全体同学参加了“爱心一日捐捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:
(1)求出本次抽查的学生人数;
(2)求出捐款10元的学生人数,并将条形图补充完整;
(3)捐款金额的众数是 元,中位数是 .
(4)请估计全校八年级1000名学生,捐款20元的有多少人?
【答案】(1)50名;(2)16人,图见解析;(3)10,12.5;(4)140人
【解析】
(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数;
(2)将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;
(3)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25.26个数据的平均数可得数据的中位数;
(4)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.
解:(1)14÷28%=50(人)
∴本次测试共调查了50名学生,
(2)50﹣(9+14+7+4)=16(人)
∴捐款10元的学生人数为16人,
补全条形统计图图形如下:
(3)由条形图可知,捐款10元人数最多,故众数是10元;
中位数是=12.5(元),
故答案为:10、12.5;
(4)1000×=140(人)
∴全校八年级1000名学生,捐款20元的有140人.
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形纸片ABCD中,AB=4,P是边BC上一点,BP=3.将纸片沿AP折叠后,点B的对应点记为点O,PO的延长线恰好经过该长方形的顶点D.
(1)试判断△ADP的形状,并说明理由;
(2)求AD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于点,且,连接.
与有什么数量关系,并说明理由;
①当满足什么条件时,四边形是矩形?并说明理由.
②当满足什么条件时,四边形是菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.
(1)点D在边AB上时,证明:AB=FA+BD;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)CD与⊙O有怎样的位置关系?请说明理由;
(2)若∠CDB=60°,AB=6,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的、两个顶点在轴上,顶点在轴的负半轴上.已知,,的面积,抛物线经过、、三点.
求此抛物线的函数表达式;
点是抛物线对称轴上的一点,在线段上有一动点,以每秒个单位的速度从向运动,(不与点,重合),过点作,交轴于点,设点的运动时间为秒,试把的面积表示成的函数,当为何值时,有最大值,并求出最大值;
设点是抛物线上异于点,的一个动点,过点作轴的平行线交抛物线于另一点.以为直径画,则在点的运动过程中,是否存在与轴相切的?若存在,求出此时点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com