【题目】如图,在平面直角坐标系中,直线与坐标轴分别交于、两点,抛物线过、两点,点为线段上一动点,过点作轴于点,交抛物线于点.
求抛物线的解析式.
求面积的最大值.
连接,是否存在点,使得和相似?若存在,求出点坐标;若不存在,说明理由.
【答案】(1).(2)存在点,使得和相似,点的坐标为或.
【解析】
(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;
(2)设点C坐标为(m,0)(m<0),则点E坐标为(m,-m2-3m+4),从而得出OC=-m、OF=-m2-3m+4、BF=-m2-3m,根据S△ABE=S梯形AOFE-S△AOB-S△BEF得出S=-2(m+2)2+8,据此可得答案;
(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.
在直线解析式中,令,得;令,得,
∴,.
∵点,在抛物线上,
∴,
解得:,,
∴抛物线的解析式为:.
如图,连接、过点作轴于点,
设点坐标为,则点坐标为,
则,,
∵,
∴,
则
.
,
∵,
∴当时,取得最大值,最大值为.
即面积的最大值为.设点坐标为,则,,,
则.
∵为等腰直角三角形,和相似
∴必为等腰直角三角形.
若,则,
∵,
∴,
∴,
∴.
∵点在抛物线上,
∴,解得(不合题意,舍去)或,
∴;
若,则,
在等腰直角三角形中,,
∴,
∴.
∵点在抛物线上,
∴,解得(不合题意,舍去)或,
∴.
综上所述,存在点,使得和相似,点的坐标为或.
科目:初中数学 来源: 题型:
【题目】在某市实施城中村改造的过程中,“旺鑫”拆迁工程队承包了一项10000 m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,提前2天完成了任务,请解答下列问题:
(1)求“旺鑫”拆迁工程队现在平均每天拆迁多少平方米;
(2)为了尽量减少拆迁给市民带来的不便,在拆迁工作进行了2天后,“旺鑫”拆迁工程队的领导决定加快拆迁工作,将余下的拆迁任务在5天内完成,那么“旺鑫”拆迁工程队平均每天至少再多拆迁多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴正半轴相交,其顶点坐标为,下列结论:①;②;③;④方程有两个相等的实数根,其中正确的结论是________.(只填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算或解方程:
(1)计算下列各题
①(π﹣3.14)0+(﹣)2﹣3﹣2;
②(3a﹣1)2﹣(3a﹣2)(3a+4);
③(12a5b7﹣8a4b6﹣4a4b2)÷(﹣2a2b)2;
(2)解分式方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;理由;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com