【题目】如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.
(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:
(2)设点C的纵坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.
【答案】(1)对称轴x=2,顶点B(2,l);(2)y1<y1;(3)h=0或h=-5.
【解析】
试题(1)将点B代入抛物线的解析式,得解析式,从而得到抛物线的对称轴及顶点坐标;
(2)用含h的式子表示yC,在根据式子特点求出yC的最大值及此时的h值,此时再判断l在x>0时的增减性;
(3)设l与x轴的交点为M,则OM=(1/5)OA或AM=(1/5)OA,进而得到M的坐标,代入解析式,求得h的值.
试题解析:
解:(l)把x=2,y=1代入y=-(x-h)2+1,得h=2.
∴解析式为y=-(x-2)2+1(或y=-x2+4x-3).
对称轴x=2,顶点B(2,l).
(2)点C的横坐标为0,则yC=-h2+1,
∴当h=0时,yC有最大值为1.
此时,l为y=-x2+1,对称轴为y轴,当x≥0时,y随着x的增大而减小.
∴x1>x2≥0时,y1<y1.
(3)把OA分1:4两部分的点为(-1,0)或(-4.0).
①x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2.
但h=-2时,OA被分为三部分,不合题意,舍去.
②同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去)
∴h=0或h=-5.
科目:初中数学 来源: 题型:
【题目】学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下图:
下列说法正确的是( )
A.该班级所售图书的总数收入是226元
B.在该班级所售图书价格组成的一组数据中,中位数是4
C.在该班级所售图书价格组成的一组数据中,众数是15
D.在该班级所售图书价格组成的一组数据中,方差是2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】武汉“新冠肺炎”发生以来,某医疗公司积极复工,加班加点生产医用防护服,为防控一线助力.以下是该公司以往的市场调查,发现该公司防护服的日销售量y(套)与销售单价x(元)之间满足一次函数关系,如下图所示,关于日销售利润w(元)和销售单价x(元)的几组对应值如下表:
销售单价x(元) | 85 | 95 | 105 |
日销售利润w(元) | 875 | 1875 | 1875 |
(注:日销售利润=日销售量×(销售单价一成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围);
(2)根据函数图象和表格所提供的信息,填空:
该公司生产的防护服的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元;
(3)该公司复工以后,在政府部门的帮助下,原材料采购成本比以往有了下降,平均起来,每生产一套防护服,成本比以前下降5元.该公司计划开展科技创新,以降低该产品的成本,如果在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量(件)与销售单价(元)之间的函数关系如图所示.
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为(元),求每月获得利润(元)关于销售单价(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为的抛物线与轴交于、两点,与轴交于点,其中点坐标为设抛物线的顶点为.
求抛物线的解析式及顶点坐标;
为轴上的一点,当的周长最小时,求点的坐标及的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).
(1)求抛物线的解析式;
(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P为圆心,PB为半径的圆与射线BC交于点E.
①求BE的长;当t=1时,求DE的长;
②若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com