【题目】如图,中,,点是边上一点.以为圆心长为半径的⊙O与边相切于点,与边相交于点,连接交⊙O于点,连接.
(1)求证:.
(2)若⊙O的半径为.
①当的长为 时,四边形为菱形;
②若.则的长为 .
【答案】(1)证明见解析;(2)①;②
【解析】
(1)利用全等三角形的判定证明即可证明结论;
(2)①运用菱形的性质可得均为等边三角形,即可得出∠BOD的度数,即可求得的长;
②利用勾股定理求出CD的长度,再利用勾股定理列出方程,求解即可得出答案.
(1)∵⊙O与边相切于点,
∴∠ADO=90°,
∴∠ADO=∠ABO=90°,
又∵OB=OD,OA=OA,
∴,
∴∠AOB=∠AOD,
∴,
∴BE=ED.
(2)①∵四边形为菱形,
∴BE=BO=ED=OD,
∵OB=OE,
∴OB=OE=BE,OE=ED=OD,
∴均为等边三角形,
∴∠BOE=∠EOD=60°,
∴∠BOD=120°,
∴的长为,
∴的长为时,四边形为菱形.
故答案为:.
②设AD=x,
∵,
∴AB=AD=x,
在中,OC=3+2=5,OD=3,
∴CD=,
∴AC=x+4,
在Rt△ABC中,,
∴,
∴,
∴.
故答案为:6.
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中的值;
(2)综合运用上表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应该选哪名队员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知OA是⊙O的半径,OA=1,点P是OA上一动点,过P作弦BC⊥OA,连接AB、AC.
(1)如图1,若P为OA中点,则AC=______,∠ACB=_______°;
(2)如图2,若移动点P,使AB、CO的延长线交于点D.记△AOC的面积为S1,△BOD的面积为S2.△AOD的面积为S3,且满足,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄金三角形就是一个等腰三角形,且其底与腰的长度比为黄金比值.如图1,在黄金中,,点是上的一动点,过点作交于点.
当点是线段的中点时, ;当点是线段的三等分点时, ;
把绕点逆时针旋转到如图2所示位置,连接,判断的值是否变化,并给出证明;
把绕点在平面内自由旋转,若请直接写出线段的长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一条直线把矩形分割成两个矩形,其中一个为黄金矩形 (宽与长的比为的矩形),则称这条直线为该矩形的黄金线.例如图所示的矩形中,直线,分别交、于点、,且,显然直线是矩形的黄金线.
(1)如图,在矩形中,,.请在图中画出矩形的其中一条黄金线,其中在边上,在边上,并标注出线段的长度;
(2)将正方形纸片按图所示的方式折叠.
如图所示,按上述方法折叠所得到的折痕是否为正方形的黄金线?请说明理由.
(3)在矩形中,,,己知矩形的黄金线恰好将矩形分割成两个黄金矩形,则______(只要求直接写出其中三个答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF
(1)若,直接写出的大小(用含的式子表示).
(2)求证:.
(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲 | 乙 | |
进价(元/袋) | ||
售价(元/袋) | 20 | 13 |
(1)求的值;
(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于4800元,且不超过4900元,问该超市有几种进货方案?
(3)在(2)的条件下,该超市如果对甲种袋裝食品每袋优惠元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3),B(4,5),C(3,2).(正方形网格中,每个小正方形的边长都是1个单位长度)
(1)画出△ABC向下平移5个单位长度得到的,并直接写出点的坐标;
(2)以点B为位似中心,在网格中画出,使与位似,且相似比为2∶1,并直接写出的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com